• 论文 • 上一篇    下一篇

一类张量特征值互补问题

罗刚1, 杨庆之1,2   

  1. 1. 南开大学数学科学学院, 天津 300071;
    2. 喀什大学数学与统计学院, 喀什 844006
  • 收稿日期:2018-03-28 出版日期:2019-12-15 发布日期:2019-11-16
  • 基金资助:

    国家自然科学基金项目(11671217),新疆自然科学基金项目(2017D01A14).

罗刚, 杨庆之. 一类张量特征值互补问题[J]. 计算数学, 2019, 41(4): 406-418.

Luo Gang, Yang Qingzhi. A CLASS OF TENSOR EIGENVALUE COMPLEMENTARITY PROBLEM[J]. Mathematica Numerica Sinica, 2019, 41(4): 406-418.

A CLASS OF TENSOR EIGENVALUE COMPLEMENTARITY PROBLEM

Luo Gang1, Yang Qingzhi1,2   

  1. 1. School of Mathematical Sciences, Nankai University, Tianjin 300071, China;
    2. School of Mathematics and Statistics, Kashi University, Kashi 844006, China
  • Received:2018-03-28 Online:2019-12-15 Published:2019-11-16
矩阵特征值互补问题在力学系统领域有广泛的应用.在本文中,我们提出了一类特殊的四阶张量特征值互补问题,它是矩阵特征值互补问题的推广.我们对该特征值互补问题解的存在性,计算复杂度等性质进行了初步的研究.在一定条件下,我们建立了该互补问题同一类非线性约束优化问题的等价性联系,并由此提出了平移投影幂法来求解该特征值互补问题.
In this paper, we generalize the matrix eigenvalue complementarity problem which has wide application in mechanical systems. A positive semidefinite eigenvalue complementarity problem(SDPEiCP) is established using fourth-order tensor form. Some properties, like the existence of the solution, computational complexity, are studied. We show the relation between SDPEiCP and a nonlinear constrained optimization problem. A shifted power method is proposed to compute the solution of SDPEiCP at last.

MR(2010)主题分类: 

()
[1] Adly S, Rammal H. A new method for solving second-order cone eigenvalue complementarity problems[J]. Journal of Optimization Theory and Applications, 2015, 165(2):563-585.

[2] Chen Z M, Yang Q Z, Ye L. Generalized eigenvalue complementarity problem for tensors[J]. Pacific Journal of Optimization, 2017, 13(3):527-545.

[3] Da Costa A P, Figueiredo I N, Júdice J J, et al. A complementarity eigenproblem in the stability analysis of finite dimensional elastic systems with frictional contact[M]//Complementarity:applications, algorithms and extensions. Springer, Boston, MA, 2001:67-83.

[4] Facchinei F, Pang J S. Finite-dimensional variational inequalities and complementarity problems[M]. Springer, 2003.

[5] Fan J Y, Nie J W, Zhou A W. Tensor eigenvalue complementarity problems[J]. Mathematical Programming, 2018,170(2):507-539.

[6] Fernandes L M, Fukushima M, Júdice J J, et al. The second-order cone eigenvalue complementarity problem[J]. Optimization Methods and Software, 2016, 31(1):24-52.

[7] Hillar C J, Lim L H. Most tensor problems are NP-hard[J]. Journal of the ACM (JACM), 2013, 60(6):45.

[8] Hou J J, Ling C, He H J. A class of second-order cone eigenvalue complementarity problems for higher-order tensors[J]. Journal of the Operations Research Society of China, 2017, 5(1):45-64.

[9] Jiang B, Li Z, Zhang S. On cones of nonnegative quartic forms[J]. Foundations of Computational Mathematics, 2017, 17(1):161-197.

[10] Judice J J, Sherali H D, Ribeiro I M, et al. On the asymmetric eigenvalue complementarity problem[J]. Optimization Methods & Software, 2009, 24(4-5):549-568.

[11] Kolda T G, Mayo J R. Shifted power method for computing tensor eigenpairs[J]. SIAM Journal on Matrix Analysis and Applications, 2011, 32(4):1095-1124.

[12] Lavilledieu P, Seeger A. Existence de valeurs propres pour les systèmes multivoques:résultats anciens et nouveaux[J]. Ann. Sci. Math. Québec, 2001, 25:47-70.

[13] Lim L H. Singular values and eigenvalues of tensors:a variational approach[C]//1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005. IEEE, 2005:129-132.

[14] Ling C, He H, Qi L. On the cone eigenvalue complementarity problem for higher-order tensors[J]. Computational optimization and applications, 2016, 63(1):143-168.

[15] Martins J A C, da Costa A P. Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction[J]. International journal of solids and structures, 2000, 37(18):2519-2564.

[16] Martins J A C, Barbarin S, Raous M, et al. Dynamic stability of finite dimensional linearly elastic systems with unilateral contact and Coulomb friction[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3-4):289-328.

[17] Qi L. Eigenvalues of a real supersymmetric tensor[J]. Journal of Symbolic Computation, 2005, 40(6):1302-1324.

[18] Queiroz M, Judice J, Humes Jr C. The symmetric eigenvalue complementarity problem[J]. Mathematics of Computation, 2004, 73(248):1849-1863.

[19] Seeger A. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions[J]. Linear Algebra and its Applications, 1999, 292(1-3):1-14.
[1] 范俊民, 冷劲松, 李东伟. 等距丢失模型下的框架张量积重构方法[J]. 计算数学, 2020, 42(2): 159-169.
[2] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[3] 刘景辉, 马昌凤, 陈争. 解无约束优化问题的一个新的带线搜索的信赖域算法[J]. 计算数学, 2012, 34(3): 275-284.
[4] 江羡珍, 韩麟, 简金宝. Wolfe线搜索下一个全局收敛的混合共轭梯度法[J]. 计算数学, 2012, 34(1): 103-112.
[5] 庞善民, 陈兰平. 一类带非单调线搜索的信赖域算法[J]. 计算数学, 2011, 33(1): 48-56.
[6] 赵在新, 成礼智. 基于小波与齐次 Besov 空间的图像分割算法[J]. 计算数学, 2011, 33(1): 103-112.
阅读次数
全文


摘要