• 论文 • 上一篇    下一篇

带非线性源项的双侧空间分数阶扩散方程的隐式中点方法

胡冬冬, 曹学年, 蒋慧灵   

  1. 湘潭大学数学与计算科学学院, 湘潭 411105
  • 收稿日期:2017-12-14 出版日期:2019-09-15 发布日期:2019-08-21

胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.

Hu Dongdong, Cao Xuenian, Jiang Huiling. THE IMPLICIT MIDPOINT METHOD FOR TWO-SIDE SPACE FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM[J]. Mathematica Numerica Sinica, 2019, 41(3): 295-307.

THE IMPLICIT MIDPOINT METHOD FOR TWO-SIDE SPACE FRACTIONAL DIFFUSION EQUATION WITH A NONLINEAR SOURCE TERM

Hu Dongdong, Cao Xuenian, Jiang Huiling   

  1. School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • Received:2017-12-14 Online:2019-09-15 Published:2019-08-21
本文用隐式中点方法离散一阶时间偏导数,并用拟紧差分算子逼近Riemann-Liouville空间分数阶偏导数,构造了求解带非线性源项的空间分数阶扩散方程的数值格式.给出了数值方法的稳定性和收敛性分析.数值试验表明数值方法是有效的.
In this paper, the numerical scheme was constructed for solving the space fractional diffusion equation with a nonlinear source term where the implicit midpoint method was applied to discretize the first order time partial derivative, and the quasi-compact difference operator was utilized to approximate Riemann-Liouville space fractional partial derivative. Stability and convergence analysis of this numerical method were given. Numerical experiments show that the numerical method is effective.

MR(2010)主题分类: 

()
[1] Hao Z, Sun Z, Cao W. A fourth-order approximation of fractional derivatives with its applications[J]. Journal of Computational Physics, 2015, 281:787-805.

[2] Zhou H, Tian W, Deng W. Quasi-compact finite difference schemes for space fractional diffusion equations[J]. Journal of Scientific Computing, 2013, 56(1):45-66.

[3] Yu Y, Deng W, Wu Y. High-order quasi-compact difference schemes for fractional diffusion equations[J]. Communications in Mathematical Sciences, 2017, 15(5):1183-1209.

[4] Cao X, Cao X, Wen L. The implicit midpoint method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. Journal of Computational and Applied Mathematics, 2017, 318:199-210.

[5] Choi H, Chung S, Lee Y. Numerical solutions for space-fractional dispersion equations with nonlinear source terms[J]. Bulletin of the Korean Mathematical Society, 2010, 47(6):1225-1234.

[6] Moroney T, Yang Q. Efficient solution of two-sided nonlinear space-fractional diffusion equations using fast poisson preconditioners[J]. Journal of Computational Physics, 2013, 246(246):304-317.

[7] Liu F, Chen S, Turner I, Burrage K, Anh V. Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term[J]. Central European Journal of Physics, 2013, 11(10):1221-1232.

[8] Chen S, Liu F, Jiang. X, Turner I, Anh V. A fast semi-implicit difference method for a nonlinear two-sided space-fractional diffusion equation with variable diffusivity coefficients[J]. Applied Mathematics and Computation, 2015, 257:591-601.

[9] Bu W, Tang Y, Wu Y, Yang J. Crank-Nicolson ADI Galerkin finite element method for twodimensional fractional FitzHugh-Nagumo monodomain model[J]. Applied Mathematics and Computation, 2015, 257:355-364.

[10] Choi Y, Chung S. Finite element solutions for the space-fractional diffusion equation with a nonlinear source term[J]. Abstract and Applied Analysis, 2012, 2012:183-201.

[11] Li Y, Wang D. Improved efficient difference method for the modified anomalous sub-diffusion equation with a nonlinear source term[J]. International Journal of Computer Mathematics, 2017, 94(4):821-840.

[12] Chan R, Jin X. An Introduction to Iterative Toeplitz Solvers[M]. Philadelphia:SIAM, 2007.

[13] Kilbas A, Srivastava H, Trujillo J. Theory and Applications of Fractional Differential Equations[M]. Elsevier Science Limited, 2006.

[14] Meerschaert M, Tadjeran C. Finite difference approximations for fractional advection dispersion flow equations[J]. Journal of Computational and Applied Mathematics, 2004, 172(1):65-77.

[15] Liu F, Zhang H. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term[J], Journal of Applied Mathematics and Informatics, 2008, 26(1-2):1-14.

[16] Pang H, Sun H. Fourth order finite difference schemes for time space fractional sub-diffusion equations[J]. Computers & Mathematics with Applications, 2016, 71(6):1287-1302.

[17] Liu Y, Du Y, Li H, He S, Gao W. Finite difference/finite element method for a nonlinear timefractional fourth-order reaction-diffusion problem[J]. Computers & Mathematics with Applications, 2015, 70(4):573-591.

[18] Liu Y, Du Y, Li H, Wang J. A two-grid finite element approximation for a nonlinear time-fractional Cable equation[J]. Nonlinear Dynamics, 2016, 85(4):2535-2548.

[19] Wang D, Xiao A, Yang W. Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative[J]. Journal of Computational Physics, 2013, 242(242):670-681.
[1] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[2] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[3] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[4] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[5] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[6] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405.
[7] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[8] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[9] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[10] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[11] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[12] 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112.
[13] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[14] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
[15] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.
阅读次数
全文


摘要