• 论文 •

### 求解Riesz空间分数阶扩散方程的一种新的数值方法

1. 1. 吕梁学院 数学系, 吕梁 033001;
2. 切斯特大学 数学系, 英国 CH1 4BJ
• 收稿日期:2017-07-28 出版日期:2019-06-15 发布日期:2019-05-18
• 基金资助:

山西省自然科学基金（201801D121010）和吕梁学院校内基金（ZRXN201511）资助项目.

Yang Jinping, Li Zhiqiang, Yan Yubin. A NEW NUMERICAL METHOD FOR SOLVING RIESZ SPACE-FRACTIONAL DIFFUSION EQUATION[J]. Mathematica Numerica Sinica, 2019, 41(2): 170-190.

### A NEW NUMERICAL METHOD FOR SOLVING RIESZ SPACE-FRACTIONAL DIFFUSION EQUATION

Yang Jinping1, Li Zhiqiang1, Yan Yubin2

1. 1. Department of Mathematics, Luliang University, Lvliang 033001, China;
2. Department of Mathematics, University of Chester, Chester CH1 4BJ, UK
• Received:2017-07-28 Online:2019-06-15 Published:2019-05-18

By using Diethelm's method, we construct an approximate scheme to the Riesz space fractional derivative with order O(△x3-α), where 1 < α < 2 and △x denotes the space step size. Further we discretize the time derivative with the Crank-Nicolson method and obtain a new finite difference method for solving Riesz space fractional diffusion equation. The stability and convergence are proved by the matrix method and the error estimate in the maximum norm is O(△t2 + △x3-α), where △t denotes the time step size. Finally, some numerical examples are given to illustrate their correctness and efficiency.
()
 [1] Chaves A S. A fractional diffusion equation to describe Lévy flights[J]. Phys. A, 1998, 239:13-16.[2] Gorenflo R, Mainardi F. Feller fractional diffusion and Lévy stable motions[C]. Conference on Lévy Processes:Theory and Applications, 18-22 January 1999.[3] Hanneken J W, Narahari Achar B N, Vaught D M, et al. A random walk simulation of fractional diffusion[J]. J. Mole. Liqu., 2004, 114(1-3):153-157.[4] Klafter J, Shlesinger M F, Zumofen G. Beyond Brownian motion[J]. Phys. Today, 1996, 49:33-39.[5] Molz F J, Fix G J, Lu S. A physics interpretation for fractional derivative in the Lévy diffusion[J]. Appl. Math. Lett., 2002,15(7):907-911.[6] EI-Nabulsi R A. Fractional description of super and subdiffusion[J]. Phys. A, 2005, 340(5-6):361-368.[7] Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastic structures[J]. J. Guid. Contr. Dynam., 1991, 14:304-311.[8] Koeller R C. Application of fractional calculus to the theory of viscoelasticity[J]. J. Appl. Mech., 1984, 51(2):299-307.[9] Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos. Soliton. Fract., 1996, 7(9):1461-1477.[10] Podlubny I. Fractional Differential Equations[M]. Academic Press, 1998.[11] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Application of Fractional Differential Equations[M]. Elsevier, Amsterdam, 2006.[12] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京:科学出版社, 2011.[13] 刘发旺, 庄平辉, 刘青霞. 分数阶偏微分方程数值方法及其应用[M]. 北京:科学出版社, 2015.[14] 孙志忠, 高广花. 分数阶微分方程的有限差分方法[M]. 北京:科学出版社, 2015.[15] Li C P, Zeng F H. Numerical Methods for Fractional Calculus[M]. CRC Press, 2015.[16] 林世敏, 许传炬. 分数阶微分方程的理论和数值方法研究[J]. 计算数学, 2016, 38:1-24.[17] Meerschaert M M, Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations[J]. J. Comput. Appl. Math., 2004, 172(1):65-77.[18] Meerschaert M M, Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations[J]. Appl. Numer. Math., 2006, 56(1):80-90.[19] Ford N J, Kamal P, Yan Y. An algorithm for the numerical solution of two-sided space fractional partial differential equations[J]. Comput. Methods Appl. Math., 2015, 15:497-514.[20] Celik C, Duman M. Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative[J]. J. Comput. Phys., 2012, 231(4):1743-1750.[21] Liu F, Zhuang P, Burrage K. Numerical methods and analysis for a class of fractional advectiondispersion models[J]. Comput. Math. Appl., 2012, 64(10):2990-3007.[22] Zhang H M, Liu F. Numerical simulation of the Riesz fractional diffusion equation with a nonlinear source term[J]. J. Appl. Math. Inform., 2008, 26(1-2):1-14.[23] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives[J]. Appl. Math. Model., 2010, 34(1):200-218.[24] Shen S, Liu F, Anh V, et al. A novel numerical approximation for the space fractional advectiondispersion equation[J]. IMA J. Appl. Math., 2014, 79(3):431-444.[25] Ding H F, Li C P, Chen Y Q. High-order algorithms for Riesz derivative and their applications(I)[J]. Abst. Appl. Anal., 2014, Article ID 653797, 17 pages.[26] Ding H F, Li C P, Chen Y Q. High-order algorithms for Riesz derivative and their applications(Ⅱ)[J]. J. Comput. phys., 2015, 293:218-237.[27] Ding H F, Li C P. High-order algorithms for Riesz derivative and their applications(Ⅲ)[J]. Fract. Calc. Appl. Anal., 2016, 19:19-55.[28] Zhao X, Sun Z Z, Hao Z P. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation[J]. SIAM J. Sci. Comput., 2014, 36:A2865-A2866.[29] Tian W Y, Zhou H, Deng W H. A class of second order difference approximation for solving space fractional diffusion equations[J]. Math. Comput., 2015, 84:1703-1727.[30] Zhou H, Tian W Y, Deng W H. Quasi-compact finite difference schemes for space fractional diffusion equations[J]. J. Sci. Comput., 2013, 56:45-66.[31] Chen M H, Deng W H. WSLD operators:A class of fourth order difference approximations for space Riemann-Liouville derivative[J]. Math., 2013, 16(2):516-540.[32] Hao Z P, Sun Z Z, Cao W R. A fourth-order approximation of fractional derivatives with its applications[J]. J. Comput. Phys., 2015, 281:787-805.[33] Diethelm K. An algorithm for the numerical solution of differential equations of fractional order[J]. Elect. Trans. Numer. Anal., 1997, 5:1-6.[34] Yan Y, Pal K, Ford N J. Higher order numerical methods for solving fractional differential equations[J]. BIT Numer. Math., 2014, 54:555-584.[35] Li Z Q, Yan Y, Ford N J. Error estimates of a high order numerical method for solving linear fractional differential equation[J]. Appl. Numer. Math., 2017, 114:201-220.[36] Li Z Q, Liang Z Q, Yan Y. High-order numerical methods for solving time fractional partial differential equations[J]. J. Sci. Comput., 2017, 71:785-803.[37] Diethelm K. The Analysis of Fractional Differential Equations[M]. New York:Springer, 2004.[38] Diethelm K. Generalized compound quadrature formulae finite-part integral[J]. IMA J. Numer. Anal., 1997, 17:479-493.[39] 张文生. 科学计算中的偏微分方程有限差分法[M]. 北京:高等教育出版社, 2006.[40] Ding H F, Li C P. High-order numerical algorithms for Riesz derivatives via construction new generating functions[J]. J. Sci. Comput., 2017, 71:759-784.
 [1] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418. [2] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456. [3] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. [4] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309. [5] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. [6] 李枝枝, 柯艺芬, 储日升, 张怀. 二阶锥线性互补问题的广义模系矩阵分裂迭代算法[J]. 计算数学, 2019, 41(4): 395-405. [7] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307. [8] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294. [9] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155. [10] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36. [11] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90. [12] 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112. [13] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353. [14] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62. [15] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.