• 论文 • 上一篇    下一篇

一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法

李郴良, 田兆鹤, 胡小媚   

  1. 桂林电子科技大学数学与计算科学学院, 广西高校数据分析与计算重点实验室, 桂林 541004
  • 收稿日期:2018-01-31 出版日期:2019-03-15 发布日期:2019-02-18
  • 基金资助:

    本文由国家自然科学基金项目(11661027)、国家重大仪器专项(61627807)和广西自然科学基金项目资助(2015 GXNSFAA139014)资助.

李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.

Li Chenliang, Tian Zhaohe, Hu Xiaomei. THE GENERAL MODULUS-BASED MATRIX MULTI-SPLITTING MULTI-PARAMETER ACCELERATED OVERRELAXATION METHOD FOR A CLASS OF WEAKLY NONLINEAR COMPLEMENTARITY PROBLEMS[J]. Mathematica Numerica Sinica, 2019, 41(1): 91-103.

THE GENERAL MODULUS-BASED MATRIX MULTI-SPLITTING MULTI-PARAMETER ACCELERATED OVERRELAXATION METHOD FOR A CLASS OF WEAKLY NONLINEAR COMPLEMENTARITY PROBLEMS

Li Chenliang, Tian Zhaohe, Hu Xiaomei   

  1. School of Mathematics and Computational Science, Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation, Guilin University of Electronic Technology, Guilin 541004, China
  • Received:2018-01-31 Online:2019-03-15 Published:2019-02-18
本文提出一类求解弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法,并给出了系数矩阵为H+-矩阵时该方法的收敛性分析.数值实验表明新方法是有效的.
A class of general modulus-based matrix mulit-splitting multi-parameter accelerated overrelaxation iterative method is proposed for solving a class of weakly nonlinear complementarity problems. Convergence conditions are given for the new methods when the coefficient matrix is an H+-matrix. The numerical results show that the new methods are efficient.

MR(2010)主题分类: 

()
[1] Goldstein A A. Convex programming in Hilbert space[J]. Bulletin of the American Mathematical Society, 1964, 70:709-710.

[2] Levitin E S, Polyak B T. Constrained minimization problems[J].USSR Computational Mathematical Physics, 1966, 6:1-50.

[3] Karamardian S. Generalized complementarity problem[J]. Journal of Optimization Theory and Applications, 1971, 8:161-168.

[4] Bai Z Z, Evans D J. Chaotic iteration methods for the linear complementarity problems[J]. Journal of computational and Applied Mathematics, 1998, 96:127-138.

[5] Bai Z Z. On the convergence of the multisplitting methods for the linear complementarity problems[J]. SIAM Journal Matrix Analysis and Application,1999,21:67-68.

[6] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications,2010, 17:917-933.

[7] Bai Z Z, Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2013, 20:425-439.

[8] Bai Z Z, Zhang L L. Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems[J]. Numerical Algorithms, 2013, 62:59-77.

[9] Dong J L, Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems[J]. Numerical Linear Algebra with Applications, 2009,16:129-143.

[10] Xia Z C, Li C C. Modulus-based splitting iteration methods for a class of nonlinear complementarity problem[J]. Applied Mathematics and Computation, 2015, 271:34-42.

[11] MA C F, Huang N. Modified modulus-based matrix splitting algorithms for a class of weakly nondifferentiable nonlinear complementarity problems[J]. Applied Numerical Mathematics, 2016, 108:116-124.

[12] Li R, Yin J F. Accelerated modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems[J]. Numerical Algorithms, 2017, 75:339-238.

[13] Li W. A general modulus-based matrix splitting method for linear complementarity problems of H-matrices[J]. Applied Mathematics Letters, 2013, 26:1159-1164.

[14] Zhang L T, Li J L. The weaker convergence of modulus-based synchronous multi-splitting multiparameters methods for linear complementarity problems[J]. Computers and Mathematics with Applications, 2014, 67:1954-1959.

[15] Zhang L T, Zuo X Y, Gu T X, etc. Improved convergence theorems of multi-splitting methods for the linear complementarity problem[J]. Applied Mathematics and Computation, 2014, 243:982-987.

[16] Zhang L T, Zhang Y X, Gu T X, etc. New convergence of modulus-based synchronous block multi-splitting multi-parameter methods for linear complementarity problems[J].Computational and Applied Mathematics, 2017, 36:481-492.

[17] Berman A, Plemmons R J. Nonnegative matrices in the mathematical sciences[M]. Academic Press, 1979.

[18] Robert F, Charnay M, Musy F. Iterations chaotiques serie-parallel pour des equations non-lineaires de point fixe[J]. Aplikace Matematiky, 1975, 20:1-38.

[19] Yong D M. Iterative Solulution of Large Linear Systems[M]. Academic Press, 1972.

[20] Huang N, Ma C F. The modulus-based matrix splitting algorithms iteration for a class of weakly nonlinear complementarity problems[J]. Numerical Linear Algebra with Applications, 2016, 23:558-569.
[1] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
[2] 甘小艇, 殷俊锋. 二次有限体积法定价美式期权[J]. 计算数学, 2015, 37(1): 67-82.
[3] 杨熙. 波形松弛算法及其在计算流体力学中的应用[J]. 计算数学, 2013, 35(1): 67-88.
[4] 高岳林, 井霞. 一类线性乘积规划问题的分支定界缩减方法[J]. 计算数学, 2013, 35(1): 89-98.
[5] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34(4): 373-386.
[6] 秦晓伟, 刘新国, 赵娜. 关于解极大相关问题问题P-SOR算法的收敛性[J]. 计算数学, 2011, 33(4): 345-356.
[7] 高岳林, 魏飞. 一类非负二次整数规划问题的分支定界缩减方法[J]. 计算数学, 2011, 33(3): 233-248.
[8] 陈芳, 蒋耀林. 关于位移线性方程组的加速超松弛迭代算法[J]. 计算数学, 2010, 32(4): 423-432.
[9] 蔡放,熊岳山,王广礼,骆志刚,. 矩阵多分裂迭代法的收敛条件[J]. 计算数学, 2007, 29(4): 367-376.
[10] 解惠青,戴华,. 多参数二次特征值问题重特征值的灵敏度分析[J]. 计算数学, 2006, 28(1): 75-88.
[11] 黄晋,吕涛. 曲边多角形域上第一类边界积分方程的机械求积算法与分裂外推[J]. 计算数学, 2004, 26(1): 51-60.
[12] 唐建国,贺国强. 解不适定算子方程的一个定常二步隐式迭代法[J]. 计算数学, 2000, 22(4): 473-486.
[13] 白中治. 一类非线性代数方程组的并行迭代算法[J]. 计算数学, 1999, 21(4): 407-416.
[14] 莫则尧!北京8009信箱计算物理实验室,李晓梅!北京怀柔3380信箱90分箱. 关于多重网格并行计算中拟边界Jacobi成份的影响[J]. 计算数学, 1999, 21(1): 9-18.
[15] 白中治. 异步并行非线性对称Gauss-Seidel迭代算法[J]. 计算数学, 1998, 20(2): 187-.
阅读次数
全文


摘要