• 论文 • 上一篇    下一篇

时间延迟扩散-波动分数阶微分方程有限差分方法

王志强1, 文立平1, 朱珍民2   

  1. 1. 湘潭大学数学与计算科学学院, 湘潭 411105;
    2. 中国科学院计算技术研究所, 北京 100190
  • 收稿日期:2017-10-26 出版日期:2019-03-15 发布日期:2019-02-18

王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.

Wang Zhiqiang, Wen Liping, Zhu Zhenmin. FINITE DIFFERENCE METHOD FOR TIME DELAY DIFFUSION-WAVE FRACTIONAL DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2019, 41(1): 82-90.

FINITE DIFFERENCE METHOD FOR TIME DELAY DIFFUSION-WAVE FRACTIONAL DIFFERENTIAL EQUATIONS

Wang Zhiqiang1, Wen Liping1, Zhu Zhenmin2   

  1. 1. School of Mathematics and Computing Science, Xiangtan University, Xiangtan 411105, China;
    2. Institute of Computing and Technology, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-10-26 Online:2019-03-15 Published:2019-02-18
本文提出求解时间延迟扩散-波动分数阶微分方程有限差分方法,方程中对时间的一阶导函数用α阶(0 < α < 1) Caputo分数阶导数代替.文章中利用Lubich线性多步法对分数阶微分进行差分离散,且文章利用分段区间证明该方法是稳定的,且利用数值实验加以验证.
This paper presents a finite difference method for solving time delay diffusion-wave fractional differential equations, we instead the first order of time by α order (0 < α < 1) Caputo fractional differential derivative in equations. In this paper, the fractional differential is discretized by the Lubich linear multistep method, and the paper uses the segmented interval to prove the stability of the algorithm, and it is validated by numerical experiments.

MR(2010)主题分类: 

()
[1] Deng W. Finite element method for the space and time fractional Fokker-Planck eqations[J]. SIAM Journal on Numerical Analysis, 2008, 47(1):204-226.

[2] 胡劲松, 胡朝浪, 郑茂渡.广义对称正则长波方程的一个拟紧致守恒差分算法[J].四川大学学报:自然科学版, 2010, 47(2):221.

[3] Yao Shujun, Zhang Yongliang. Numerical solution of generalized Maxwell fluid fractional differential equation[J]. Computer Engineering and Applications, 2013, 49(12):41.

[4] 杨晨航, 刘发旺.分数阶Relaxation-Oscillation方程的一种分数阶预估-校正方法[J].厦门大学学报:自然科学版, 2005, 44(6):761-765.

[5] 章红梅, 刘发旺.时间分数阶电报方程的一种解技巧[J].厦门大学学报:自然科学版, 2007, 46(1):10-13.

[6] Gelhar, Lynn and Welty, Claire and R. Rehfeldt, K. A critical review of data on field-scale dispersion in aquifers[J]. 1993, 29(01):1867-1869.

[7] Xu M, Tan M. Theory analysis of genernal second order anomalous diffusion velocity field, stress field and eddy field in liquid[J]. Science in China:Series S, 2001, 31:626-637.

[8] del-Castillo-Negrete, Diego and Carreras, Benjamin and Lynch, V. Fractional diffusion in plasma turbulence[J]. 2004, 11(07):3854-3864.

[9] Meerschaert, Mark and Tadjeran, Charles. Finite difference approximations for two-sided spacefractional partial differential equations[J]. 2004, 56(03):80-90.

[10] Tadjeran, Charles and Meerschaert, Mark and Scheffler, Hans-Peter. A second-order accurate numerical approximation for the fraction diffusion equation[J]. 2006, 213(03):205-213.

[11] Shen Shujun, Liu F, Anh Vo. Numerical approximations and solution techniques for the space-time riesz-caputo fractional advection-diffusion equation[J]. Applied Mathematical Modelling, 2011, 56(03):383-403.

[12] Bu W P, Liu X T, Tang Y F, Yang J Y. Finite element multigrid method for multi-term time fractional advection diffusion equations[J]. Int. J. Model. Simul. Sci. Comput., 2015, 6.

[13] Yang J Y, Huang J F, Liang D M, Tang Y F. Numerical solution of fractional diffusion-wave equation based on fractional multistep method[J]. Applied Mathematical Modelling, 2014, 38(14):3652-3661.

[14] Li Changpin, Ding Hengfei. Higher order finite difference method for the reaction and anomalousdiffusion equation[J]. Applied Mathematical Modelling, 2014, 38(15):3802-3821.

[15] Dimitrov, Numerical approximatios for fractional differential equations[J]. Journal of Fractional Calculus and Applications, 2013, 5(22):1-45.

[16] Vladimir V. Uchaikin. Fractional Derivatives for Physicists and Engineers[M], volume 1. Higher Education Press, 2013.

[17] Liu Mingding. A numerical method for solving one fractional delay diffusion differential equation[J]. Henan Science, 2016, 34(2).
[1] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[2] 付姚姚, 曹礼群. 矩阵形式二次修正Maxwell-Dirac系统的多尺度算法[J]. 计算数学, 2019, 41(4): 419-439.
[3] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[4] 王坤, 张扬, 郭瑞. Helmholtz方程有限差分方法概述[J]. 计算数学, 2018, 40(2): 171-190.
[5] 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362.
[6] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
[7] 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418.
[8] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[9] 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274.
[10] 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.
[11] 罗振东, 高骏强, 孙萍, 安静. 交通流模型基于特征投影分解技术的外推降维有限差分格式[J]. 计算数学, 2013, 35(2): 159-170.
[12] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
[13] 来翔, 袁益让. 一类三维拟线性双曲型方程交替方向有限元法[J]. 计算数学, 2010, 32(1): 15-36.
[14] 吴宏伟. 关于广义KPP方程的数值解[J]. 计算数学, 2009, 31(2): 137-150.
[15] 王珏,张法勇,. 带有多项式非线性项的高维反应扩散方程有限差分格式的长时间行为[J]. 计算数学, 2007, 29(2): 177-188.
阅读次数
全文


摘要