• 论文 • 上一篇    

一类分数阶多项延迟微分方程的Jacobi谱配置方法

杨水平   

  1. 惠州学院数学系, 惠州 516007
  • 收稿日期:2016-07-21 出版日期:2017-02-15 发布日期:2017-02-17
  • 基金资助:

    国家自然科学基金(11501238)、广东省自然科学基金(2016A030313119,2014A030313641)、惠州学院自然科学基金(hzuxl201420)资助项目.

杨水平. 一类分数阶多项延迟微分方程的Jacobi谱配置方法[J]. 计算数学, 2017, 39(1): 98-114.

Yang Shuiping. JACOBI SPECTRAL COLLOCATION METHOD FOR SOLVING A CLASS OF FRACTIONAL MULTI-DELAY DIFFERENTIAL EQUATIONS[J]. Mathematica Numerica Sinica, 2017, 39(1): 98-114.

JACOBI SPECTRAL COLLOCATION METHOD FOR SOLVING A CLASS OF FRACTIONAL MULTI-DELAY DIFFERENTIAL EQUATIONS

Yang Shuiping   

  1. Department of mathematics, Huizhou Univerisity, Huizhou 516007, China
  • Received:2016-07-21 Online:2017-02-15 Published:2017-02-17
本文利用Jacobi谱配置方法数值求解了一类分数阶多项延迟微分方程,并证明了该方法是收敛的,通过若干数值算例验证了相应的理论结果,结果表明Jacobi谱配置方法求解这类方程是非常高效的,同时也为这类分数阶延迟微分方程的数值求解提供了新的选择,对分数阶泛函方程的数值方法的研究有一定的指导意义.
In this paper,we study Jacobi spectral collocation method for solving the initial value problem (IVP) of a class of fractional multi-delay differential equations.The convergence of the method for this problem is obtained.Some illustrative examples verify our theoretical results successfully.The results of this paper may provide a new good choice for solving fractional delay differential equations.It is believed that these results will be helpful for the further researches on numerical solutions of fractional functional differential equations.

MR(2010)主题分类: 

()
[1] Yu C, Gao G Z. Some results on a class of fractional functional differential equations[J]. Commun. Appl. Nonlinear Anal., 2004, (11)3:67-75.

[2] Zhou Y. Existence and uniqueness of fractional functional differential equations with unbounded delay, International Journal of Dynamical Systems and Differential Equations[J]. 2008, (1)4:239-244.

[3] Zhou Y, Jiao F, Li J. Existence and uniqueness for fractional neutral differential equations with infinite delay[J]. Nonlinear Analysis:Theory, Method and Applications, 2009, (71):3249-3256.

[4] Zhou Y, Jiao F, Li J. Existence and uniqueness for p-type fractional neutral differential equations[J]. Nonlinear Analysis:Theory, Method and Applications, 2009, (71):2724-2733.

[5] Wang J R, Zhou Y. Existence of mild solutions for fractional evolution system[J]. Applied Mathematics and Computation, 2011, (218)2:357-367.

[6] Morgardo M L, Ford N J, Lima P M. Analysis and numerical methods for fractional differential equations with delay[J]. Journal of Computational and Applied Mathematics, 2013, (252):159-168.

[7] Podlubny I. Fractional differential equations[M]. Academic Press, SanDiego, 1999.

[8] Diethelm K and Walz G. Numerical solution of fractional order differential equation by extrapolation[J]. Numer. Algorithms, 1997, (16):231-253.

[9] Diethelm K, Ford N J and Freed Alan D. A predictor-corrector approach for the numerical solution of fractional differential equations[J]. Nonlinear Dynamics, 2002, (29):3-22.

[10] Diethelm K, Ford N J and Reed A D. Detailed error analysis for a fractional Adams method[J]. Numerical Algorithms, Kluwer Academic Publishers, 2004, (36)1:31-52.

[11] El-Mesiry A E M, El-Sayed A M A and El-Saka H A A. Numerical methods for multi-term fractional (arbitrary) orders differential equations[J]. Appl.Math.Comput., 2005, (160)3:683-699.

[12] Arvet Pedas, Enn Tamme. Spline collocation methods for linear multi-term fractional differential equations[J]. Journal of Computational and Applied Mathematics, 2011, (236):167-176.

[13] Pedas A, Tamme E. On the convergence of spline collocation methods for solving fractional differential equations[J]. J. Comput. Appl. Math., 2011, (235):3502-3514.

[14] Li Changpin, Chen An, Ye Junjie, Numerical approaches to fractional calculus and fractional ordinary differential equation[J]. Journal of Computational Physics, 2011, (230):3352-3368.

[15] Li X J, Xu C J. A space-time spectrual method for the time fractional diffusion equation[J]. SIAM Journal of Numerical Analysis, 2009, (47):2018-2131.

[16] Song F Y, Xu C J. Spectral direction splitting methods for two-dimensional space fractional diffusion equations[J]. Journal of Computational Physics, 2015, (299):196-214.

[17] Zhuang P, Liu F. Turner I, et al. Galerkin finite element method and error analysis for the fractional Cable equation[J]. Numeircal Algorithms, 2015, 2016, (72)2:447-466.

[18] Bu W P, Tang Y F, et al. Galerkin finite method for two-dimensional Riesz space fractional diffusion equations[J]. Journal of Computational Physics, 2014, (276):26-38

[19] Chen Y P, Tang T. Spectral methods for weakly singular Volterra integral equations with smooth solutions[J]. Journal of Computational and Applied Mathematics, 2009, (233):938-950.

[20] Chen Y P, Tang T. Convergence analysis of the jacobi spectral-collocation methods for volterra integral equations with a weakly singular kernel[J]. Mathematics of Computation, 201, (79)269:147-167.

[21] Li X J, Tang T, Xu C J. Numerical solutions for weakly singular Volterra integral equations using Chebshev and Legendre Psudo-spectral Galerkin method[J]. Journal of Scientific Computing, 2015, 1-22.

[22] Basim K, Saltani A. Solution of delay fractional differential equations by using linear multistep method[J]. Journal of Kerbala University, 2007, (5)4:217-222.

[23] Sweilam N H, Khader M M, Mahdy A M S. Numerical studies for fractional-order logistic differential equation with deferent delays[J]. J. Appl. Math., 2012(2012), doi:10.1155/2012/764894.

[24] 杨水平. 分数阶比例延迟微分方程的三次样条配置方法[J]. 应用数学, 2014,(27)3:673-678.

[25] 杨水平, 肖爱国. 分数阶延迟微分方程的样条配置方法[J]. 数学的实践与认识,2014, (44)6:247-254.

[26] Zayernouri M, Cao W, Zhang Z, et al. Spectral and Discontinuous Spectral Element Methods for Fractional Delay Equations[J]. Siam Journal on Scientific Computing, 2014, (6)36:B904-B929.

[27] Shen J, Tang T, Wang L L. Spectral methods:Algorithems, Analysis and Applications[M]. Springer-Verlag Berlin Heidelberg, 2011.

[28] Ishtiaq Ali, Hermann Brunner, Tang T. Spectral methods for pantograph-type differential and integral equations with multiple delays[J]. Front. Math. China 2009, (4)1:49-61.
[1] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[2] 祝爱卿, 金鹏展, 唐贻发. 基于辛格式的深度哈密尔顿神经网络[J]. 计算数学, 2020, 42(3): 370-384.
[3] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.
[4] 张根根, 易星, 肖爱国. 求解非线性刚性初值问题的隐显线性多步方法的误差分析[J]. 计算数学, 2015, 37(1): 1-13.
[5] 康彤, 陈涛. 无界区域瞬时涡流问题有限元-边界元耦合的A-φ法的误差分析[J]. 计算数学, 2014, 36(2): 163-178.
[6] 任全伟, 庄清渠. 一类四阶微积分方程的Legendre-Galerkin谱逼近[J]. 计算数学, 2013, 35(2): 125-136.
[7] 李宏, 周文文, 方志朝. Sobolev方程的CN全离散化有限元格式[J]. 计算数学, 2013, 35(1): 40-48.
[8] 李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.
[9] 李宏, 孙萍, 尚月强, 罗振东. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(4): 413-424.
[10] 张铁, 李铮. 一阶双曲问题间断有限元的后验误差分析[J]. 计算数学, 2012, 34(2): 215-224.
[11] 腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的时间二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373-386.
[12] 陈全发, 冯光, 傅尧. 一类分数阶常微分方程初值问题的预校算法[J]. 计算数学, 2009, 31(4): 435-448.
[13] 孙萍, 罗振东, 周艳杰. 热传导对流方程基于POD的差分格式[J]. 计算数学, 2009, 31(3): 323-334.
[14] 沈智军,袁光伟,沈隆钧. 离散纵标方法诸格式的误差分析[J]. 计算数学, 2002, 24(2): 219-228.
阅读次数
全文


摘要