• 论文 • 上一篇    下一篇

一类随机非自伴波方程的半离散有限元近似

李晓翠1, 杨小远1, 张英晗2   

  1. 1. 北京航空航天大学数学与系统科学学院, 北京 100191;
    2. 北京科技大学数理学院, 北京 100083
  • 收稿日期:2015-12-30 出版日期:2017-02-15 发布日期:2017-02-17
  • 基金资助:

    国家自然科学基金(61271010),北京市自然科学基金(4152029)资助项目.

李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.

Li Xiaocui, Yang Xiaoyuan, Zhang Yinghan. SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF STOCHASTIC NONSELFADJOINT WAVE EQUATION[J]. Mathematica Numerica Sinica, 2017, 39(1): 42-58.

SEMIDISCRETE FINITE ELEMENT APPROXIMATION OF STOCHASTIC NONSELFADJOINT WAVE EQUATION

Li Xiaocui1, Yang Xiaoyuan1, Zhang Yinghan2   

  1. 1. Department of Mathematics, Beihang University, LMIB of the Ministry of Education, Beijing 100191, China;
    2. School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2015-12-30 Online:2017-02-15 Published:2017-02-17
本文研究了由白噪音驱动的随机非自伴波方程的有限元近似,由于线性算子A非自伴,不能应用A的特征值和特征向量,从而得到的结果更具有一般性.空间离散上采用标准的有限元法,并借助强连续算子函数的性质,得到了该方程的强收敛误差估计.本文方法也适用于多维情况的分析.最后用数值算例验证了理论分析的正确性.
We study the semidiscrete finite element approximation of the linear stochastic nonselfadjoint wave equation forced by additive noise.The results here are more general since the linear operator A does not need to be self-adjoint and we do not need information about eigenvalues and eigenfunctions of the linear operator A.In order to obtain the strong convergence error estimates,a standard finite element method for the spatial discretisation and the properties of a strongly continuous operator cosine function are used.The error estimates are applicable in the multi-dimensional case.

MR(2010)主题分类: 

()
[1] Jin B, Lazarov R, Pasciak J and Zhou Z. Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H-s, 0< s ≤ 1. Lecture Notes in Computer Science, 2013, 24-37.

[2] Travis C and Webb G. Cosine families and abstract nonlinear second order differential equations[J]. Acta Mathematica Academiae Scientiaum Hungaricae, 1978, 32:75-96.

[3] Prévôt C and Röckner R. A concise course on stochastic partial differential equations. Berlin:2007, vol. 1905 of Lecture Notes in Mathematics, Springer.

[4] Cohen D and Sigg M. Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations[J]. Numerische Mathematik, 2012, 121:1-29.

[5] Cohen D, Larsson S and Sigg M. A trigonometric method for the linear stochastic wave equation[J]. SIAM J. Numer. Anal., 2013, 51:204-222.

[6] Lutz D. On bounded time-dependent perturbations of operator cosine functions. Aequationes Mathematicae, 1981, 23:197-203.

[7] Allen E, Novosel S and Zhang Z. Finite element and difference approximation of some linear stochastic partial differential equations[J]. Stoch. Stoch. Rep., 1998, 64(1-2):117-142.

[8] Baker G and Bramble J. Semidiscrete and single step full discrete approximations for second order hyperbolic equations[J]. RAIRO Numer. Anal., 1979, 13:75-100.

[9] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, Cambridge, 1992.

[10] Lord G and Tambue A. Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise[J]. IMA J. Numer. Anal., 2012, 1-29.

[11] Fujita H and Suzuki T. Evolutions problems (part1). in:P. G. Ciarlet, J. L. Lions (Eds.) Handbook of Numerical Analysis, vol II, North-Holland, Amsterdam, 1991, 789-928.

[12] J. Printems. On the discretization in time of parabolic stochastic partial differential equations. Esaim Mathematical Modelling and Numerical Analysis, 2001, 1055-1078.

[13] Quer-Sardanyons L and Sanz-Solé M. Space semi-discretisations for a stochastic wave equation[J]. Potential Anal., 2006, 24:303-332.

[14] Palla M, Sofi A and Muscolino G. Nonlinear random vibrations of a suspended cable under wind loading. Proceedings of Fourth International Conference on Computational Stochstic Mechanics(CSM4), 2002, 159-168.

[15] Pazy A. Semigroups of linear operators and applications to partial differential equations. SpringerVerlag, Berlin, 1983.

[16] Kovács M, Larsson S and Lindgren F. Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise[J]. BIT Number.Math., 2012, 52(1):85-108.

[17] Walsh J B. On numerical solutions of the stochastic wave equation[J]. Illinois J. Math., 2006, 50:991-1018.

[18] Kovács M, Larsson S and Saedpanah F. Finite element approximation of the linear stochastic wave equation with additive noise[J]. SIAM J. Numer. Anal., 2010, 48(2):408-427.

[19] Ciarlet P. The finite element method for elliptic problems. North-Holland:1978.

[20] Du Q and Zhang T. Numerical approximation of some linear stochastic partial differential equations driven by special additive noise[J]. SIAM J. Numer. Anal., 2002, 40:1421-1445.

[21] Anton R, Cohen D, Larsson S and Wang X. Full discretisation of semi-linear stochastic wave equations driven by multiplicative noise[J]. SIAM J. Numer. Anal., arXiv:1503.00073v1.

[22] Dalang R, Khoshnevisan D, Mueller C, Nualart D and Xiao Y. A minicourse on stochastic partial differential equation. Berlin:2009, vol.1962 of Lecture Notes in Mathematics, Springer-Verlag.

[23] Larsson S. Nonsmooth data error estimates with applications to the study of longtime behavior of finite element solutions of semilinear parabolic problems. 1992.

[24] Georgios T, Georgios E. Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise. ESAIM:Mathematical Modelling and Numerical Analysis, 2010, 44:289-322.

[25] Thomée V. Galerkin finite element methods for parabolic problems. 2006, volume 25 of Springer Series in Computational Mathematics, Springer-Verlag:Berlin.

[26] Wang X. An exponential integrator scheme for time discretization of nonlinear stochastic wave equation[J]. Journal of Scientific Computing, 2014, 64:234-263.

[27] Yang X, Li X, Qi R and Zhang Y. Full-discrete finite element method for stochastic hyperbolic equation[J]. Journal of Computational Mathematics, 2015, 33(5):533-556.

[28] Yan Y. Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise[J]. BIT Numer. Math., 2004, 44:829-847.

[29] Yan Y. Galerkin finite element methods for stochastic parabolic partial differential equations[J]. SIAM J. Numer. Anal., 2005, 43(4):1363-1384.
[1] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[2] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[3] 戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158.
[4] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[5] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[6] 彭捷, 代新杰, 肖爱国, 卜玮平. 中立型随机延迟微分方程分裂步θ方法的强收敛性[J]. 计算数学, 2020, 42(1): 18-38.
[7] 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265.
[8] 岳超. 高阶分裂步(θ1,θ2,θ3)方法的强收敛性[J]. 计算数学, 2019, 41(2): 126-155.
[9] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[10] 张维, 王文强. 随机微分方程改进的分裂步单支θ方法的强收敛性[J]. 计算数学, 2019, 41(1): 12-36.
[11] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[12] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[13] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[14] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[15] 赵智慧, 李宏, 罗振东. Sobolev方程的连续时空有限元方法[J]. 计算数学, 2016, 38(4): 341-353.
阅读次数
全文


摘要