• 论文 • 上一篇    下一篇

一种新的求非线性方程组的数值延拓法

郭俊1, 吴开腾2, 张莉2, 夏林林3   

  1. 1. 四川师范大学数学与软件科学学院, 成都 610066;
    2. 内江师范学院四川省高等学校数值仿真重点实验室, 内江 641112;
    3. 重庆市巴川中学, 重庆 402569
  • 收稿日期:2015-12-28 出版日期:2017-02-15 发布日期:2017-02-17
  • 通讯作者: 吴开腾, E-mail:ktengwu@njtc.edu.cn.
  • 基金资助:

    国家自然科学基金青年基金(11502121),四川省教育厅创新团队计划项目(13TD00001)和内江师范学院重点学科“计算数学”(0430101)资助.

郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41.

Guo Jun, Wu Kaiteng, Zhang Li, Xia Linlin. A NEW CLASS OF NUMERICAL CONTINUATION METHOD FOR SOLVING THE NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2017, 39(1): 33-41.

A NEW CLASS OF NUMERICAL CONTINUATION METHOD FOR SOLVING THE NONLINEAR EQUATIONS

Guo Jun1, Wu Kaiteng2, Zhang Li2, Xia Linlin3   

  1. 1. College of Mathematics and Soft Science, Sichuan Normal University, Chengdu 610066, China;
    2. Key Laboratory of Numerical Simulation in Sichuan Province, Neijiang Normal University, Neijiang 641100, China;
    3. The Bachuan Middle School, Chongqing 402569, China
  • Received:2015-12-28 Online:2017-02-15 Published:2017-02-17
针对迭代过程中的Jacobi奇异问题,本文提出了一种新的数值延拓法.通过构造双参数同伦算子,采用可控条件和适当选取参数的方式克服Jacobi奇异性,并分析了方法的收敛性.最后,通过数值实验对比,验证了方法的可行性和优越性.特别是具有可调控越过Jacobi奇异(点、线、面)的优势,从而也在某种程度上解决了数值延拓法严重依赖于初值的问题.
In order to solve the Jacobi singular problem in the process of the iteration,in this paper,a new numerical continuation method is proposed.The Jacobi singularity is overcome by constructing the double-parameter homotopy operator,using controlled conditions and selecting appropriate parameter,and the convergence of this method is analyzed.Finally,the feasibility and superiority of this method is validated by numerical comparison,especially with the advantages of crossing the Jacobi singular problem (points,lines,surfaces).Thus,to an extent,this method can also solve the problem of being heavily dependent on the initial value,which is the shortcoming of the numerical continuation method.

MR(2010)主题分类: 

()
[1] 杨爱利, 伍渝江, 李旭, 等. 一类非线性方程组的Newton-PSS迭代法术[J]. 计算数学, 2012, 34(4):329-340.

[2] 陈传淼, 胡宏伶, 雷蕾, 等. 非线性方程组的Newton流线法[J]. 计算数学, 2012, (3):235-258.

[3] Yamamoto T. Historical developments in convergence analysis for Newton's and Newton-like methods[J]. J. Comput. Appl. Math., 2000, 124(1):1-23.

[4] Chun C. A family of composite fourth-order iterative methods for solving nonlinear equations[J]. Appl. Math. Comput., 2007, 187(2):951-956.

[5] Meyer G H. On solving nonlinear equations with a one-parameter operator imbedding[J]. SIAM J. Nuner. Anal., 1969, 5(4):739-752.

[6] 李庆扬, 莫孜中, 祁力群. 非线性方程组的数值解法[M]. 北京:科学出版社, 1987.

[7] Decker D W, Kelley C T. Convergence rates for Newton's method at singular points[J]. SIAM J. Nuner. Anal., 1983, 20(2):296-314.

[8] Weber H, Werner W. On the accurate determination of nonisolated solutions of nonlinear equations[J]. Computing, 1981, 26(4):315-326.

[9] 杨柳, 陈艳萍. 一种新的Levenberg-Marquardt算法的收敛性[J]. 计算数学, 2005, 27(1):55-62.

[10] 李受百. 函数因子法-非线性方程组求解中处理奇异问题的一种新方法[J]. 计算数学, 1983, 5(2):162-175.

[11] 夏林林, 吴开腾. 大范围求解非线性方程组的指数同伦法[J]. 计算数学, 2014, 2(2):215-224.

[12] Wu X. Note on the improvement of Newton's method for system of nonlinear equations[J]. Appl. Math. Comput., 2007, 189(2):1476-1479.

[13] Kou J, Li Y, Wang X. Efficient continuation Newton-like method for solving systems of non-linear equations[J]. Appl. Math. Comput., 2006, 174(2):846-853.

[14] Hueso J L, Martínez E, Torregrosa J R. Modified Newton's method for systems of nonlinear equations with singular jacobian[J]. J. Comput. Appl. Math., 2009, 224(1):77-83.

[15] Peris R, Marquina A, Candela V. The convergence of the perturbed Newton method and its application for ill-conditioned problems[J]. Appl. Math. Comput., 2011, 218(7):2988-3001.

[16] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M]. New York:Academic Press, 1970.

[17] 黄象鼎, 曾钟钢, 马亚楠. 非线性数值分析的理论与方法[M]. 武汉:武汉大学出版社, 2004.

[18] 李庆扬. 解非线性方程组的离散型延拓法[J]. 数值计算与计算机应用, 1984, 5(2):114-124.
[1] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[2] 张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22.
[3] 宋海明, 张琪, 李景治, 刘宏宇. 求解美式回望期权的有限元方法[J]. 计算数学, 2016, 38(3): 245-256.
[4] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
[5] 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302.
[6] 夏林林, 吴开腾. 大范围求解非线性方程组的指数同伦法[J]. 计算数学, 2014, 36(2): 215-224.
[7] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.
[8] 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340.
[9] 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258.
[10] 王泽文, 张文. 基于遗传算法重建多个散射体的组合Newton法[J]. 计算数学, 2011, 33(1): 87-102.
[11] 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396.
[12] 袁功林,鲁习文,韦增欣,. 具有全局收敛性的求解对称非线性方程组的一个修改的信赖域方法[J]. 计算数学, 2007, 29(3): 225-234.
[13] 安恒斌,白中治. NGLM:一类全局收敛的Newton-GMRES方法[J]. 计算数学, 2005, 27(2): 151-174.
[14] 杨柳,陈艳萍. 一种新的Levenberg-Marquardt算法的收敛性[J]. 计算数学, 2005, 27(1): 55-62.
[15] 安恒斌,白中治. 关于多元非线性方程的Broyden方法[J]. 计算数学, 2004, 26(4): 385-400.
阅读次数
全文


摘要