• 论文 • 上一篇    下一篇

一种求解非线性方程组的3p阶迭代方法

张旭1, 檀结庆2, 艾列富3   

  1. 1. 合肥工业大学数学学院, 合肥 230009;
    2. 安庆师范大学数学与计算科学学院, 安庆 246133;
    3. 合肥工业大学数学学院, 合肥 230009
  • 收稿日期:2015-11-04 出版日期:2017-02-15 发布日期:2017-02-17
  • 基金资助:

    国家自然科学基金项目(61472466,61603003),中央高校基本科研业务费专项经费(JZ2015HGXJ0175)和安徽省自然科学基金(1608085MF144).

张旭, 檀结庆, 艾列富. 一种求解非线性方程组的3p阶迭代方法[J]. 计算数学, 2017, 39(1): 14-22.

Zhang Xu, Tan Jieqing, Ai Liefu. A NEW METHOD WITH CONVERGENCE ORDER 3P FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS[J]. Mathematica Numerica Sinica, 2017, 39(1): 14-22.

A NEW METHOD WITH CONVERGENCE ORDER 3P FOR SOLVING SYSTEMS OF NONLINEAR EQUATIONS

Zhang Xu1, Tan Jieqing2, Ai Liefu3   

  1. 1. School of Mathematics and Computation Science, Anqing Normal University, Anqing 246133, China;
    2. School of Mathematics, Hefei University of Technology, Hefei 230009, China;
    3. School of Computer and Information, Anqing Normal University, Anqing 246133, China
  • Received:2015-11-04 Online:2017-02-15 Published:2017-02-17
本文将一种改进的二步迭代算法作为预测,将高斯-勒让德求积公式作为校正,提出了一种求解非线性方程组的具有3p收敛阶的迭代方法.最后给出了一些数值实例,将本文的实验结果与现有的几种迭代方法的实验结果作了比较分析,验证了本文所提出的结果.
In this paper,we present a new iterative scheme with the convergence order 3p for solving the systems of nonlinear equations by using a modified two-step iterative algorithm as a predictor and Gauss-Legendre quadrature as a corrector.Numerical examples are given to show that the presented method outperforms the other ones.

MR(2010)主题分类: 

()
[1] Bruns D D, Bailey J E. Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state[J]. Chem. Eng. Sci., 1977, 32(3):257-264.

[2] Abad M F, Cordero A, Torregrosa J R. Fourth-and fifth-order methods for solving nonlinear systems of equations:an application to the global positioning system[J]. Abstr. Appl. Anal., 2013, Article ID:586708, doi.org/10.1155/2013/586708.

[3] Ortega J M, Rheinboldt W C. Iterative solution of nonlinear equations in several variables[M]. New York and London:Academic Press, 1970.

[4] Darvishi M T, Barati A. Super cubic iterative methods to solve systems of nonlinear equations[J]. Appl. Math. Comput., 2007, 188(2):1678-1685.

[5] Babajee D K R, Dauhoo M Z, Darvishi M T, Barati A. A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule[J]. Appl. Math. Comput., 2008, 200(1):452-458.

[6] Darvishi M T, Barati A. A fourth-order method from quadrature formulae to solve systems of nonlinear equations[J]. Appl. Math. Comput., 2007, 188(1):257-261.

[7] Cordero A, Torregrosa J R. Variants of newtons method using fifth-order quadrature formulas[J]. Appl. Math. Comput., 2007, 190(1):686-698.

[8] Cordero A, Torregrosa J R. On interpolation variants of Newton's method for functions of several variables[J]. J. Comput. Appl. Math., 2010, 234(1):34-43.

[9] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3):297-304.

[10] Khirallah M Q, Hafiz M A. Solving system of nonlinear equations using family of Jarratt methods[J]. Intern. J. Diff. Eq. Applic., 2013, 12(2):69-83.

[11] Darvishi M T, Shin B C. High-order Newton-Krylov methods to solve systems of nonlinear equations[J]. J. KSIAM, 2011, 15(1):19-30.

[12] Cordero A, Hueso J L, Martínez E, Torregrosa J R. Efficient high-order methods based on golden ratio for nonlinear systems[J]. Appl. Math. Comput., 2011, 217(9):4548-4556.

[13] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1):14-20.

[14] Artidiello S, Cordero A, Torregrosa J R, Vassileva M P. Design of high-order iterative methods for nonlinear systems by using weight function procedure[J]. Abstr. Appl. Anal., 2015, Article ID:289029, doi.org/10.1155/2015/289029.

[15] Ezquerro J A, Grau-Sánchez M, Grau A, Hernández M A, Noguera M, Romero N. On iterative methods with accelerated convergence for solving systems of nonlinear equations[J]. J. Optim. Theory Appl., 2011, 151(1):163-174.

[16] Cordero A, Torregrosa J R, Vassileva M P. Pseudocomposition:a technique to design predictorcorrector methods for systems of nonlinear equations[J]. Appl. Math. Comput., 2012, 218(23):11496-11504.

[17] Ostrowski A M. Solutions of equations and systems of equations[M]. New York:Academic Press, 1966.

[18] Cordero A, Hueso J L, Martínez E, Torregrosa J R. A modified Newton-Jarratt's composition[J]. Numer. Algor., 2010, 55(1):87-99.

[19] Darvishi M T, Barati A. A third-order newton-type method to solve systems of nonlinear equations[J]. Appl. Math. Comput., 2007, 187(2):630-635.

[20] 隋允康, 兆文忠. 非线性方程组的二次规划解法和应用[J]. 计算力学学报, 2002, 19(2):245-246.
[1] 王同科, 樊梦. 第二类端点奇异Fredholm积分方程的分数阶退化核方法[J]. 计算数学, 2019, 41(1): 66-81.
[2] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[3] 郭俊, 吴开腾, 张莉, 夏林林. 一种新的求非线性方程组的数值延拓法[J]. 计算数学, 2017, 39(1): 33-41.
[4] 许秀秀, 黄秋梅. 拟等级网格下非线性延迟微分方程间断有限元法[J]. 计算数学, 2016, 38(3): 281-288.
[5] 樊梦, 王同科, 常慧宾. 非光滑函数的分数阶插值公式[J]. 计算数学, 2016, 38(2): 212-224.
[6] 张英晗, 杨小远. 一类带有空间时间白噪音随机弹性方程的全离散差分格式[J]. 计算数学, 2016, 38(1): 25-46.
[7] 孟文辉, 王连堂. Helmholtz方程周期Green函数及其偏导数截断误差收敛阶的分析[J]. 计算数学, 2015, 37(2): 123-136.
[8] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
[9] 王洋, 伍渝江, 付军. 一类弱非线性方程组的Picard-MHSS迭代方法[J]. 计算数学, 2014, 36(3): 291-302.
[10] 张旭, 檀结庆. 三步五阶迭代方法解非线性方程组[J]. 计算数学, 2013, 35(3): 297-304.
[11] 杨爱利, 伍渝江, 李旭, 孟玲玲. 一类非线性方程组的Newton-PSS迭代法[J]. 计算数学, 2012, 34(4): 329-340.
[12] 陈传淼, 胡宏伶, 雷蕾, 曾星星. 非线性方程组的Newton流线法[J]. 计算数学, 2012, 34(3): 235-258.
[13] 杨柳, 陈艳萍. 求解非线性方程组的一种新的全局收敛的Levenberg-Marquardt算法[J]. 计算数学, 2008, 30(4): 388-396.
[14] 李强; 孙家昶. 第一类双变量Chebyshev多项式的最小零偏差性质研究[J]. 计算数学, 2008, 30(3): 283-294.
[15] 袁功林,鲁习文,韦增欣,. 具有全局收敛性的求解对称非线性方程组的一个修改的信赖域方法[J]. 计算数学, 2007, 29(3): 225-234.
阅读次数
全文


摘要