• 论文 • 上一篇    下一篇

速度追踪问题中鞍点系统的新分裂迭代

曾闽丽1,2, 张国凤3   

  1. 1. 兰州大学数学与统计学院, 兰州 730000;
    2. 莆田学院数学学院, 福建莆田 351100;
    3. 兰州大学数学与统计学院, 兰州 730000
  • 收稿日期:2015-07-26 出版日期:2016-12-15 发布日期:2016-10-13
  • 基金资助:

    国家自然科学基金(11271174,11471175,11511130015);福建省自然科学基金(2016J05016);福建省教育厅基金(JAT160450)和莆田学院校内科研基金(2015061,2016021,2016075)资助项目.

曾闽丽, 张国凤. 速度追踪问题中鞍点系统的新分裂迭代[J]. 计算数学, 2016, 38(4): 354-371.

Zeng Minli, Zhang Guofeng. A NEW SPLITTING ITERATIVE TECHNIQUE FOR THE SADDLE POINT SYSTEM FROM A VELOCITY TRACKING PROBLEM[J]. Mathematica Numerica Sinica, 2016, 38(4): 354-371.

A NEW SPLITTING ITERATIVE TECHNIQUE FOR THE SADDLE POINT SYSTEM FROM A VELOCITY TRACKING PROBLEM

Zeng Minli1,2, Zhang Guofeng3   

  1. 1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China;
    2. School of Mathematics, Putian University, Putian 351100, Fujian, China;
    3. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
  • Received:2015-07-26 Online:2016-12-15 Published:2016-10-13
有限元离散一类速度追踪问题后得到具有鞍点结构的线性系统,针对该鞍点系统,本文提出了一种新的分裂迭代技术.证明了新的分裂迭代方法的无条件收敛性,详细分析了新的分裂预条件子对应的预处理矩阵的谱性质.数值结果验证了对于大范围的网格参数和正则参数,新的分裂预条件子在求解有限元离散速度追踪问题得到的鞍点系统时的可行性和有效性.
We develop a new splitting iterative method and a splitting preconditioner for the saddle point system arising from the finite element discretization for the velocity tracking problem. It is proved that the new splitting iterative method converges unconditionally. The spectral properties of the matrix preconditioned by the splitting preconditioner are analyzed. Furthermore, the theoretical results are confirmed by numerical experiments, which demonstrate that the new preconditioner is feasible and effective for the the linear system arising from the finite element discretization equations of the velocity tracking problem for a wide range of mesh sizes and regularization parameters.

MR(2010)主题分类: 

()
[1] Bai Z Z, Li G Q. Restrictively preconditioned conjugate gradient methods for systems of linear equations[J]. IMA J. Numer. Anal., 2003, 23(4):561-580.

[2] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3):603-626.

[3] Bai Z Z, Parlett B N, Wang Z Q. On generalized successive overrelaxation methods for augmented linear systems[J]. Numer. Math. 2005, 102(1):1-38.

[4] Bai Z Z, Wang Z Q. On parameterized inexact Uzawa methods for generalized saddle point problems[J]. Linear Algebra Appl., 2008, 428(11):2900-2932.

[5] Benzi M, Guo X P. A dimensional split preconditioner for Stokes and linearized Navier-Stokes equations[J]. Appl. Numer. Math., 2011, 61(1):66-76.

[6] Benzi M, Ng M K, Niu Q. A relaxed dimensional factorization preconditioner for the incompressible Navier-Stokes equations[J]. J. Comput. Phys., 2011, 230(16):6185-6202.

[7] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14(1):1-137.

[8] Bramble J H, Pascisk J E, Vassilev A T. Analysis of the inexact Uzawa algorithm for saddle point problems[J]. SIAM J. Numer. Anal., 1997, 34(3):1072-1092.

[9] Cao Y, Yao L Q and Jiang M Q. A relaxed HSS preconditioner for saddle point problems from meshfree discretization[J]. J. Comput. Math., 2013, 31:398-421.

[10] Cao Y, Miao S X, Cui Y S. A relaxed splitting preconditioner for generalized saddle point problems[J]. Comput. Appl. Math., 2014:1-15.

[11] Cao Y, Du J, Niu Q. Shift-splitting preconditioners for saddle point problems[J]. J. Comput. Appl. Math., 2014, 272:239-250.

[12] Cao Y, Yao L Q, Jiang M Q. A modified dimensional split preconditioner for generalized saddle point problems[J]. J. Comput. Appl. Math., 2013, 250:70-82.

[13] Chen F, Jiang Y L. A generalization of the inexact parameterized Uzawa methods for saddle point problems[J]. Appl. Math. Comput., 2008, 206:765-771.

[14] Chen C R, Ma C F. A generalized shift-splitting preconditioner for saddle point problems[J]. Appl. Math. Letters, 2015, 43:49-55.

[15] Elman H C, Ramage A, Silvester D J. Algorithm 866:IFISS, a Matlab toolbox for modelling incompressible flow[J]. ACM Tran. Math. Soft., 2007, 33(2):14.

[16] Hinze M, Pinnau R, Ulbrich M, Ulbrich S. Optimization with PDE Constraints[M]. Springer, New York, 2009.

[17] Horn R A, Johnson C R. Matrix Analysis, Second edition[M]. Cambridge University Press, Cambridge, 2012.

[18] Kellogg R B. Another alternating-direction-implicit method[J]. J. Korean Soc. Ind. Appl. Math., 1963, 11:976-979.

[19] Kollmann M, Zulehner W. A robust preconditioner for distributed optimal control for Stokes flow with control constraints[J]. Springer Berlin Heidelberg, 2013:771-779.

[20] Pearson J W. On the role of commutator arguments in the development of parameter-robust preconditioners for Stokes control problems[J]. Technical Report., 2013.

[21] Rees T, Wathen A J. Preconditioning iterative methods for the optimal control of the Stokes equations[J]. SIAM J. Sci. Comput., 2011, 33(5):2903-2926.

[22] Nocedal J, Wright S. Numerical Optimization[M]. Springer, New York, 1999

[23] Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172(2):762-771.

[24] Saad Y, Schultz M H. GMRES:a generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM J. Statist. Sci. Comput. 1986, 7(3):856-869.

[25] Saad Y. Iterative Methods for Sparse Linear Systems (2nd edn)[M]. SIAM, Philadelphia, PA, 2003.

[26] Simoncini V, Benzi M. Spectral properties of the Hermitian and skew-Hermitian splitting preconditioner for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(2):377-389.

[27] Stoll M, Wathen A. All-at-once solution of time-dependent Stokes control[J]. J. Comput. Phys., 2013, 232(1):498-515.

[28] Tan N B, Huang T Z, Hu Z J. A Relaxed Splitting Preconditioner for the Incompressible Navier-Stokes Equations[J]. J. Appl. Math., 2012, 2012:1-12.

[29] Zhang J L, Gu C Q, Zhang K. A relaxed positive-definite and skew-Hermitian splitting preconditioner for saddle point problems[J]. Appl. Math. Comput., 2014, 249:468-479.
[1] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236.
[2] 戴平凡, 李继成, 白建超. 解线性互补问题的预处理加速模Gauss-Seidel迭代方法[J]. 计算数学, 2019, 41(3): 308-319.
[3] 潘春平, 王红玉, 曹文方. 非Hermitian正定线性方程组的外推的HSS迭代方法[J]. 计算数学, 2019, 41(1): 52-65.
[4] 柯艺芬, 马昌凤. 椭圆PDE-约束优化问题的一个预条件子[J]. 计算数学, 2017, 39(1): 70-80.
[5] 张凯院, 耿小姣, 聂玉峰. 一类Riccati方程组对称自反解的两种迭代算法[J]. 计算数学, 2016, 38(2): 161-170.
[6] 潘春平. 关于Katz指标的二级分裂迭代方法[J]. 计算数学, 2015, 37(4): 390-400.
[7] 潘春平 . 关于PageRank的广义二级分裂迭代方法[J]. 计算数学, 2014, 36(4): 427-436.
[8] 曹阳, 牛强, 蒋美群. 广义鞍点问题基于PSS的约束预条件子[J]. 计算数学, 2012, 34(2): 183-194.
[9] 黄佩奇, 陈金如. 非匹配网格上Stokes-Darcy模型的非协调元方法及其预条件技术[J]. 计算数学, 2011, 33(4): 397-408.
[10] 王俊仙, 胡齐芽, 舒适. 一种求解 H(curl) 型椭圆问题的非重叠 DDM 预条件子[J]. 计算数学, 2010, 32(4): 373-384.
[11] 蒋美群, 曹阳. 广义鞍点问题的块三角预条件子[J]. 计算数学, 2010, 32(1): 47-58.
[12] 陈星玎, 胡齐芽. 基于几何非协调分解的Lagrange乘子区域分解方法[J]. 计算数学, 2009, 31(3): 299-308.
[13] 钟柳强, 谭林, 王俊仙, 舒适. 一种求解第二类Nedelec 棱有限元方程的快速算法[J]. 计算数学, 2008, 30(4): 397-408.
[14] 廖安平, 段雪峰, 沈金荣. 矩阵方程X+A^{*}X^{-q}A=Q(q\geq 1)的Hermitian正定解[J]. 计算数学, 2008, 30(4): 369-378.
[15] 苏京勋,刘继军,. 一类抛物型方程系数反问题的分裂算法[J]. 计算数学, 2008, 30(1): 99-12.
阅读次数
全文


摘要