• 论文 • 上一篇    下一篇

非线性分数阶反应扩散方程组的间断时空有限元方法

刘金存, 李宏, 刘洋, 何斯日古楞   

  1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 收稿日期:2015-04-23 出版日期:2016-04-15 发布日期:2016-05-13
  • 基金资助:

    国家自然科学基金(11361035,11301258)和内蒙古自然科学基金(2012MS0106,2012MS0108,2014BS0101)资助项目.

刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.

Liu Jincun, Li Hong, Liu Yang, He Siriguleng. DISCONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR THE SYSTEM OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS[J]. Mathematica Numerica Sinica, 2016, 38(2): 143-160.

DISCONTINUOUS SPACE-TIME FINITE ELEMENT METHOD FOR THE SYSTEM OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS

Liu Jincun, Li Hong, Liu Yang, He Siriguleng   

  1. School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
  • Received:2015-04-23 Online:2016-04-15 Published:2016-05-13
利用时间间断空间连续的时空有限元方法构造了空间分数阶反应扩散方程组的可以逐时间层求解的全离散格式.在时间离散区间上,采用Radau积分公式,将插值理论与有限元理论相结合,给出了全离散格式解的存在唯一性结果,并证明了所给格式是无条件稳定的,进而详细给出最优阶L(L2)模误差估计过程.最后用数值算例验证了理论分析的正确性.
A time-stepping fully discrete scheme for the system of space fractional reaction-diffusion equations is constructed by the space-time finite element method, which is discontinuous in time and continuous in space. Existence and uniqueness for the solution of the fully discrete scheme are analyzed by combining finite element theory and interpolation theory through the Radau integral formula in time discrete intervals. The scheme is proved to be stable unconditionally. The optimal order error estimates in L(L2) norm are presented in detail. Numerical examples are given to illustrate the validity of theoretical analysis.

MR(2010)主题分类: 

()
[1] Podlubny I. Fractional Differential Equations[M]. New York:Academic Press, 1999.

[2] Liu F, Zhuang P, Anh V, Turner I, Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J]. Appl. Math. Comput., 2007, 191:12-20.

[3] Sun Z Z, Wu X N. A fully discrete difference scheme for a diffusion-wave system[J]. Appl. Numer. Math., 2006, 56:193-209.

[4] Yuste S B, Acedo L. An explicit finite difference method and a new von Numann-type stability analysis for fractional diffusion equation[J]. SIAM J. Numer. Anal., 2005, 42:1862-1874.

[5] Li X J, Xu C J. Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation[J]. Commun. Comput. Phys., 2010, 8(5):1016-1051.

[6] Ervin V J, Roop J P. Variational formaulation for the stationary fractional advection dispersion equation[J]. Numer. Methods Partial Differential Equations, 2006, 22(3):558-576.

[7] Deng W H. Finite element method for the space and time fractional Fokker-Planck equation[J]. SIAM J. Numer. Anal., 2008, 47:204-226.

[8] Zhang H, Liu F, Anh V. Galerkin finite element approximation of symmetric space-fractional partial differential equations[J]. Appl. Math. Comput., 2010, 217:2534-2545.

[9] Li C P, Zhao Z G, Chen Y Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion[J]. Comput. Math. Appl., 2011, 62:855-875.

[10] Ford N J, Xiao J Y, Yan Y B. A finite element method for time fractional partial differential equations[J]. Fract. Calc. Appl. Anal., 2011, 14:454-574.

[11] Bu W P, Liu X T, Tang Y F, Yang J Y. Finite element multigrid method for multi-term time fractional advection diffusion equations[J]. Int. J. Model. Simul. Sci. Comput., 2015, 6 DOI:10.1142/S1793962315400012.

[12] Mustapha K, McLean W. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation[J]. Numer. Algor., 2011, 56:159-184.

[13] Zheng Y Y, Li C P, Zhao Z G. A fully discrete discontinuous Galerkin method for nonlinear fractional Fokker-Planck equation[J]. Math. Probl. Eng., 2010, Article ID 279038, 26 pages.

[14] 刘金存, 李宏. A space-time finite element method for the semilinear fractional diffusion equation:the discontinuous Galerkin method[J]. 应用数学, 2013, 26(4):853-862.

[15] Ahmad B, Alhothuali M S, Alsulami H H, Kirane M, Timoshin S. On nonlinear nonlocal systems of reaction diffusion equations[J]. Abstr. Appl. Anal., 2014, Article ID 804784, 6 pages.

[16] Karakashian C, Makridakis C. A space-time finite element method for the nonlinear Schrödinger the discontinuous Galerkin method[J]. Math. Comp., 1998, 97(222):479-499.

[17] Yang Q, Liu F, Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model., 2010, 34:200-218.

[18] Davis P J, Rabinowitz P. Methods of Numerical Integration[M]. New York:Academic Press, 1975.

[19] Brenner B C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York:Springer-verlag, 1994.
[1] 尚在久, 宋丽娜. 关于辛算法稳定性的若干注记[J]. 计算数学, 2020, 42(4): 405-418.
[2] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[3] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[4] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[5] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[6] 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[7] 胡冬冬, 曹学年, 蒋慧灵. 带非线性源项的双侧空间分数阶扩散方程的隐式中点方法[J]. 计算数学, 2019, 41(3): 295-307.
[8] 盛秀兰, 赵润苗, 吴宏伟. 二维线性双曲型方程Neumann边值问题的紧交替方向隐格式[J]. 计算数学, 2019, 41(3): 266-294.
[9] 杨晋平, 李志强, 闫玉斌. 求解Riesz空间分数阶扩散方程的一种新的数值方法[J]. 计算数学, 2019, 41(2): 170-190.
[10] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[11] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[12] 丛玉豪, 胡洋, 王艳沛. 含分布时滞的时滞微分系统多步龙格-库塔方法的时滞相关稳定性[J]. 计算数学, 2019, 41(1): 104-112.
[13] 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[14] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[15] 张根根, 唐蕾, 肖爱国. 求解刚性Volterra延迟积分微分方程的隐显单支方法的稳定性与误差分析[J]. 计算数学, 2018, 40(1): 33-48.
阅读次数
全文


摘要