• 论文 • 上一篇    下一篇

非定常Stokes方程的全离散稳定化有限元格式

赵智慧, 李宏, 方志朝   

  1. 内蒙古大学数学科学学院, 呼和浩特 010021
  • 收稿日期:2013-05-11 出版日期:2014-02-15 发布日期:2014-02-12
  • 通讯作者: 李宏
  • 基金资助:

    国家自然科学基金(11061021,11361035),内蒙古自然科学基金(2012MS0106).

赵智慧, 李宏, 方志朝. 非定常Stokes方程的全离散稳定化有限元格式[J]. 计算数学, 2014, 36(1): 85-98.

Zhao Zhihui, Li Hong, Fang Zhichao. A FULLY DISCRETE STABILIZED FINITE ELEMENT FORMULATION FOR NON-STATIONARY STOKES EQUATION[J]. Mathematica Numerica Sinica, 2014, 36(1): 85-98.

A FULLY DISCRETE STABILIZED FINITE ELEMENT FORMULATION FOR NON-STATIONARY STOKES EQUATION

Zhao Zhihui, Li Hong, Fang Zhichao   

  1. School of Mathematical sciences, Inner Mongolia University, Hohhot 010021, China
  • Received:2013-05-11 Online:2014-02-15 Published:2014-02-12
本文研究二维非定常Stokes方程全离散稳定化有限元方法. 首先给出关于时间向后一步Euler半离散格式,然后直接从该时间半离散格式出发,构造基于两局部高斯积分的稳定化全离散有限元格式,其中空间用P1-P1元逼近,证明有限元解的误差估计. 本文的研究方法使得理论证明变得更加简便,也是处理非定常Stokes方程的一种新的途径.
A fully discrete stabilized finite element method is studied for the two-dimensional Stokes equation. The Euler backward semi-discrete formulation in time for non-stationary Stokes equation is established firstly. And then a fully discrete stabilized finit e element formulation based on two local Gauss integrals for non-stationary Stokes equation is directly established from time semi-discrete formulation. The spatial discretization is based on the P1 - P1 triangular element for the approximation of the velocity and pressure. And the error estimates for the fully discrete finite element approximate solutions are derived. The approaches studied here could make theoretical argumentation simper and more convenient. And it is a new pathway for non-stationary equations.

MR(2010)主题分类: 

()
[1] 于静之, 陈焕贞. 非定常Stokes方程混合有限元方法[J]. 山东大学 大学学报(理学版), 2008, 43(10): 1-6.

[2] 张斐然, 非定常Stokes方程的Cank-Nicolison格式下的质量集中非 协调有限元方法[J]. 山东大学大学学报(理学版), 2011, 46(12): 33-38.

[3] Li J, Mei L Q, He Y.A pressure-Poisson stabilized finite element method for the non-stationary Stokes equations to circumvent the inf-sup condition[J]. Appl. Math. Comput. 2006, 182: 24-35.

[4] Huang Z P, Feng X L, Liu D M. A stabilized finite element method for the time-dependent Stokes equations based on Crank-Nicolson Scheme[J]. Appl. Math. Model, 2013, 37: 1910-1919.

[5] Zhang T, He Y N. Fully discrete finite element method based on pressure stabilized for the transient Stokes equations[J]. Math. Comput. Simulation, 2012, 82: 1496-1515.

[6] Bochev P, Dohrmann C, Gunzburger M. Stabilized of low-order mixed finite elements for the Stokes equations[J]. SLAM. Numer. Anal. 2006, 44: 82-101.

[7] Breezzi F, pitkaranta J. On the stabilized of finite element approximations of the Stokes problems, in: W Hackbusch(Ed), Efficient soutons of Elliptic systems, Note on Numerical Fluid Mechanics, vol 10, Vieweg, 1984.

[8] Brooks A, Hughes T. Streamline upwind/petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompresible Navier-Stokes equations[J]. Comput.Methods, Appl. Mech. Eng, 1982, 32: 199-259.

[9] He Y N, Li K T. Two-level stabilized finite element methods for the steady Navier-Stokes problem[ J]. Computing, 2005, 74: 337-351.

[10] Li J, He Y. A stabilized finite element method based on two local Gauss integrations for the Stokes equations[J]. Comp. Appl. Math. 2008, 214: 58-65.

[11] Silvester D J. Stabilized vs stable mixed finite element methods for incompressible flow[J]. Numerical Analysis Report No, 1997, 307.

[12] Girault V, Raviant P A. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms[ M]. Berlin Heidelberg: Spinger-Verlag, 1986.

[13] Heywood J G, Rannacher R. Finite element appriximation of non-stationary Navier-Stokes problem, I. Regularity of solutions and second-order estimates for spatial discretization[J]. SIAM J. Numer. Anal, 1982, 19: 275-311.

[14] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods.: New York: Springer-Verlag, 1991.

[15] Ye X. On the relation between finite volume and finite element methods applied to the Stokes equations[J]. Numer. Methods Partial Differential Equations, 2001, 17: 440-453.

[16] Adams R A.Sobolev space[M]. 北京: 科学出版社, 2006.

[17] Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equation[J]. Adv. Comput.Math, 2009, 30: 141-145.

[18] Shen L H, Li J, Chen Z X.Analysis of stabilized finite volume method for the transient stationary Stokes equations[J]. International Jonrnal of Nunmerial Analysis and Modeling, 2009, 6(3): 505- 519.

[19] 罗振东. 混合有限元基础及其应用[M]. 北京: 科学出版社. 2006.

[20] Ciarlet P G. The Finite Element Method for Elliptic Problems[J]. New York: North-Holland, Amsterdam, 1978.

[21] Larsson S. The long-time behavior of finite-element approximation of solutions to semilinear parabolic problems[J]. SLAM J. Numer. Anal. 1989, 26: 348-365.

[22] Li S, Hou Y R. A fully discrete stabilized finite element method for the time-dependent Navier- Stokes equations[J]. Appl. Math. Comput. 2009, 215: 85-99.

[23] 安静, 孙萍, 罗振东, 非定常Stokes方程的稳定化全离散有限体积 元格式[J]. 计算数学. 2011, 33: 213-224.
[1] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[2] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[3] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[4] 戴小英. 电子结构计算的数值方法与理论[J]. 计算数学, 2020, 42(2): 131-158.
[5] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[6] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[7] 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[8] 李世顺, 祁粉粉, 邵新平. 求解定常不可压Stokes方程的两层罚函数方法[J]. 计算数学, 2019, 41(3): 259-265.
[9] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[10] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[11] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[12] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
[13] 李宏, 杜春瑶, 赵智慧. 反应扩散方程的连续时空有限元方法[J]. 计算数学, 2017, 39(2): 167-178.
[14] 单炜琨, 李会元. 双调和算子特征值问题的混合三角谱元方法[J]. 计算数学, 2017, 39(1): 81-97.
[15] 李晓翠, 杨小远, 张英晗. 一类随机非自伴波方程的半离散有限元近似[J]. 计算数学, 2017, 39(1): 42-58.
阅读次数
全文


摘要