• 论文 •

### 交通流模型基于特征投影分解技术的外推降维有限差分格式

1. 1. 华北电力大学数理学院, 北京 102206;
2. 贵州师范大学数学与计算机科学学院, 贵阳 550001
• 收稿日期:2012-07-16 出版日期:2013-05-15 发布日期:2013-05-13
• 基金资助:

国家自然科学基金(批准号: 11271127和11061009)、贵州省科技计划课题(批准号: 黔科合J字[2011]2367)和河北省自然科学基金(批准号:A2010001663).

Luo Zhendong, Gao Junqiang, Sun Ping, An Jing. A EXTRAPOLATION REDUCED-ORDER FDS BASED ON POD TECHNIQUE FOR TRAFFIC FLOW MODEL[J]. Mathematica Numerica Sinica, 2013, 35(2): 159-170.

### A EXTRAPOLATION REDUCED-ORDER FDS BASED ON POD TECHNIQUE FOR TRAFFIC FLOW MODEL

Luo Zhendong1, Gao Junqiang1, Sun Ping2, An Jing2

1. 1. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
2. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
• Received:2012-07-16 Online:2013-05-15 Published:2013-05-13

In this paper, a traffic flow Aw-Rascle-Zhang(ARZ) model is studied with a proper orthogonal decomposition (POD) technique. A extrapolation reduced-order finite difference scheme (FDS) based on POD method with lower dimension is established. And a numerical example is used to verify that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the extrapolation reduced-order FDS based on POD method is feasible and efficient for finding numerical solutions for traffic flow equation.

MR(2010)主题分类:

()
 [1] Lighthill M H, Whitham G B. On kinematics wave: II. A theory of traffic flow on long crowdedroads[J]. Proc. Roy. Soc. London, Ser., A, 1955, 22: 317–345.[2] Aw A, Rascle M. Resurrection of second order models of traffic flow[J]. SIAM J. Appl. Math.,2000, 60: 916–938.[3] Zhang H M. A non-equilibrium traffic model devoid of gas-like behavior[J]. Transportation ResearchPart B, 2002, 36: 275–290.[4] Zhang P, Liu R X. Hyperbolic conservation laws with space-dependent flux (I): Characteristicstheory and Riemann problem[J]. Journal of Computational and Applied Mathematics, 2003, 156:1–21.[5] Zhang P, Liu R X. Hyperbolic conservation laws with space-dependent fluxes: II. general study ofnumerical fluxes[J]. Journal of Computational and Applied Mathematics, 2005, 176(1): 105–129.[6] Siebel F, Mauser W. On the fundamental diagram of traffic flow[J]. SIAM J. Appl. Math., 2006,66(4): 1150–1162.[7] Mendez A R, Velasco R M. An alternative model in traffic flow equations[J]. TransportationResearch Part B, 2008, 42: 782–797.[8] Holmes P, Lumley J L, Berkooz G. Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge: Cambridge University Press, 1996.[9] Fukunaga K. Introduction to statistical recognition[M]. New York: Academic Press, 1990.[10] Jolliffe I T. Principal component analysis[M]. Berlin: Springer–Verlag, 2002[11] Sirovich L. Turbulence and the dynamics of coherent structures: Part I-III[J]. Quarterly of AppliedMathematics, 1987, 45: 561–590.[12] Berkooz G, Holmes P, Lumley J L. The proper orthogonal decomposition in analysis of turbulentflows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539–575.[13] Ly H V, Tran H T. Proper orthogonal decomposition for flow calculations and optimal control ina horizontal CVD reactor[J]. Quarterly of Applied Mathematics, 2002, 60: 631–656.[14] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for parabolic problems[J]. Numerische Mathematik, 2001, 90: 117–148.[15] Kunisch K, Volkwein S. Galerkin proper orthogonal decomposition methods for a general equationin fluid dynamics[J]. SIAM Journal on Numerical Analysis, 2002, 40: 492–515[16] 罗振东, 陈静, 谢正辉, 安静, 孙萍. 抛物型方程基于POD方法的时间二阶精度CN有限元降维格式[J].中国科学A辑: 数学, 2011, 41(5): 447-460.[17] Luo Z D, Li H, Zhou Y J, Huang X M. A reduced FVE formulation based on POD method anderror analysis for two-dimensional viscoelastic problem[J]. Journal of Mathematical Analysis andApplications, 2012, 385: 310–321.[18] Luo Z D, Li H, Zhou Y J, Xie Z H. A reduced finite element formulation and error estimatesbased on POD method for two-dimensional solute transport problems[J]. Journal of MathematicalAnalysis and Applications, 2012, 385: 371–383.[19] Luo Z D, Ou Q L, Xie Z X. A reduced finite difference scheme and error estimates based on PODmethod for the non-stationary Stokes equation[J]. Applied Mathematics and Mechanics, 2011,32(7): 847–858.[20] Luo Z D, Du J, Xie Z H, Guo Y. A reduced stabilized mixed finite element formulation based onproper orthogonal decomposition for the no-stationary Navier-Stokes equations[J]. InternationalJournal for Numerical Methods in Engineering, 2011, 88(1): 31–46.[21] Luo Z D, Xie Z H, Shang Y Q, Chen J. A reduced finite volume element formulation and numericalsimulations based on POD for parabolic equations[J]. Journal of Computational and AppliedMathematics, 2011, 235(8): 2098–2111.[22] Luo Z D, Xie Z H, Chen J. A reduced MFE formulation based on POD for the non-stationaryconduction-convection problems[J]. Acta Mathematica Scientia, 2011, 31(5): 1765–1785.[23] Li H R, Luo Z D, Chen J. Numerical simulation based on proper orthogonal decompositionfor two-dimensional solute transport problems[J]. Applied Mathematical Modelling, 2011, 35(5):2489–2498.[24] Sun P, Luo Z D, Zhou Y J. Some reduced finite difference schemes based on a proper orthogonaldecomposition technique for parabolic equations[J]. Applied Numerical Mathematics, 2010, 60(1-2): 154–164.[25] Luo Z D, Zhou Y J, Yang X Z. A reduced finite element formulation based on proper orthogonaldecomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009, 59(8): 1933–1946.[26] Luo Z D, Chen J, Sun P, Yang X Z. Finite element formulation based on proper orthogonaldecomposition for parabolic equations[J]. Science in China Series A: Mathematics, 2009, 52(3):587–596.[27] Luo Z D, Yang X Z, Zhou Y J. A reduced finite difference scheme based on singular value decompositionand proper orthogonal decomposition for Burgers equation[J]. Journal of Computationaland Applied Mathematics, 2009, 229(1): 97–107[28] Luo Z D, Chen J, Navon I M, Yang X Z. Mixed finite element formulation and error estimates basedon proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. SIAMJournal on Numerical Analysis, 2008, 47(1): 1–19.[29] Luo Z D, Chen J, Navon I M, Zhu J. An optimizing reduced PLSMFE formulation for nonstationaryconduction-convection problems[J]. International Journal for Numerical Methods inFluid, 2009, 60(4): 409–436.[30] Luo Z D, Wang R W, Zhu J. Finite difference scheme based on proper orthogonal decompositionfor the non-stationary Navier-Stokes equations[J]. Science in China Series A: Math., 2007, 50(8):1186–1196.[31] Luo Z D, Chen J, Zhu J, Wang R W, Navon I M. An optimizing reduced order FDS for thetropical Pacific Ocean reduced gravity model[J]. International Journal for Numerical Methods inFluids, 2007, 55(2): 143–161[32] Luo Z D, Zhu J, Wang R W, Navon I M. Proper orthogonal decomposition approach and errorestimation of mixed finite element methods for the tropical Pacific Ocean reduced gravity model[J].Computer Methods in Applied Mechanics and Engineering, 2007, 196(41-44): 4184–4195.[33] 孙萍, 罗振东, 周艳杰. 热传导对流方程基于POD的差分格式[J].计算数学, 2009, 31(3): 323-334.[34] Du J, Zhu J, Luo Z D, Navon I M. An optimizing finite difference scheme based on properorthogonal decomposition for CVD equations[J]. International Journal for Numerical Methods inBiomedical Engineering, 2011, 27(1): 78–94.[35] Di Z H, Luo Z D, Xie Z H, Wang A W, Navon I M. An optimizing implicit difference schemebased on proper orthogonal decomposition for the two-dimensional unsaturated soil water flowequation[J]. International Journal for Numerical Methods in Fluids, 2012, 68: 1324–1340.[36] Cao Y H, Zhu J, Luo Z H, Navon I M. Reduced order modeling of the upper tropical Pacific Oceanmodel using proper orthogonal decomposition[J]. Computers & Mathematics with Applications,2006, 52: 1373–1386.[37] Cao Y H, Zhu J, Navon I M, Luo Z D. A reduced order approach to four-dimensional variationaldata assimilation using proper orthogonal decomposition[J]. International Journal for NumericalMethods in Fluids, 2007, 53: 1571–1583.[38] 腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373-386.[39] Luo Z D, Li H, Shang Y Q, Fang Z. A LSMFE formulation based on proper orthogonal decompositionfor parabolic equations[J]. Finite Elements in Analysis and Design, 2012, 60: 1–12.[40] Du J, Navon I M, Steward J L, Alekseev A K, Luo Z D. Reduced order modeling based on PODof a parabolized Navier-Stokes equations model I: Forward Mode[J]. International Journal forNumerical Methods in Fluids, 2012; 69: 710–730.[41] Luo Z D, Ou Q L, Wu J R, Xie Z H. A reduced finite element formulation based on POD fortwo-dimensional hyperbolic equation[J]. Acta Mathematica Scientia, 2012, 32(5):1997–2009.[42] Luo Z D, Li H, Sun P, An J, Navon IM. A reduced finite volume element formulation based on PODmethod and numerical simulation for two-dimensional solute transport problems[J]. Mathematicsand Computers in Simulation, Publication Online, 2013, DOI: 10.1016/j.matcom.2012.11.012.[43] 罗振东, 李宏, 陈静. 非饱和土壤水流问题基于POD方法的降阶有限体积元格式及外推算法实现[J]. 中国科学A辑: 数学, 2012,42(12): 1263-1280.[44] 刘儒勋,舒其望. 计算流体力学的若干新方法[M]. 北京: 科学出版社, 2003.
 [1] 李焕荣. 土壤水流与溶质耦合运移问题的混合元-迎风广义差分法研究[J]. 计算数学, 2013, 35(1): 1-10. [2] 李宏, 孙萍, 尚月强, 罗振东. 粘弹性方程全离散化有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(4): 413-424. [3] 腾飞, 孙萍, 罗振东. 抛物型方程基于POD方法的时间二阶中心差的时间二阶精度简化有限元格式[J]. 计算数学, 2011, 33(4): 373-386. [4] 李焕荣, 罗振东. 二维非饱和土壤水分运动问题的半离散有限体积元模拟[J]. 计算数学, 2011, 33(1): 57-68. [5] 李焕荣, 罗振东. 非粘性土壤中溶质运移问题的守恒混合有限元法及其数值模拟[J]. 计算数学, 2010, 32(2): 183-194. [6] 李久平,袁益让,. 三维电阻抗成像的体积元方法的数值模拟和分析[J]. 计算数学, 2008, 30(1): 59-74. [7] 李焕荣,罗振东,李潜,. 二维粘弹性问题的广义差分法及其数值模拟[J]. 计算数学, 2007, 29(3): 251-262. [8] 刘霖雯,刘超,江成顺,. 一类非线性伪抛物型方程的伪谱解法[J]. 计算数学, 2007, 29(1): 99-12. [9] 李焕荣,罗振东,谢正辉,朱江,. 非饱和土壤水流问题的广义差分法及其数值模拟[J]. 计算数学, 2006, 28(3): 321-336. [10] 江成顺,姚俐,李清善,. 一类边界耦合的扩散系统爆破现象的数值模拟[J]. 计算数学, 2006, 28(1): 31-42. [11] 罗振东,谢正辉,朱江,曾庆存. 非饱和水流问题的混合元法及其数值模拟[J]. 计算数学, 2003, 25(1): 113-128.