• 论文 • 上一篇    下一篇

广义鞍点问题基于PSS的约束预条件子

曹阳1,2, 牛强3, 蒋美群1   

  1. 1. 苏州大学数学科学学院, 江苏苏州 215006;
    2. 南通大学交通学院, 江苏南通 226019;
    3. 西交利物浦大学数理中心, 江苏苏州 215123
  • 收稿日期:2011-09-05 出版日期:2012-05-15 发布日期:2012-05-20
  • 基金资助:

    苏州大学国家自然科学基金预研基金(SDY2011B01),江苏省普通高校研究生创新项目(CX10B_029Z),苏州大学优秀博士学位论文选题立项(23320957),西交利物浦大学科研发展基金RDF.

曹阳, 牛强, 蒋美群. 广义鞍点问题基于PSS的约束预条件子[J]. 计算数学, 2012, 34(2): 183-194.

Cao Yang, Niu Qiang, Jiang Meiqun. ON PSS-BASED CONSTRAINT PRECONDITIONERS FOR GENERALIZED SADDLE POINT PROBLEMS[J]. Mathematica Numerica Sinica, 2012, 34(2): 183-194.

ON PSS-BASED CONSTRAINT PRECONDITIONERS FOR GENERALIZED SADDLE POINT PROBLEMS

Cao Yang1,2, Niu Qiang3, Jiang Meiqun1   

  1. 1. School of Mathematics Sciences, Soochow University, Suzhou 215006, Jiangsu, China;
    2. School of Transportation, Nantong University, Nantong 226019, Jiangsu, China;
    3. Mathematics and Physics Center, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
  • Received:2011-09-05 Online:2012-05-15 Published:2012-05-20
对于(1,1)块为非Hermitian阵的广义鞍点问题,本文给出了一种基于正定和反对称分裂(Positive definite andskew-Hermitian splitting, PSS)的约束预条件子.该预条件子的(1,1)块由求解非Hermitian正定线性方程组时的PSS迭代法所构造得到.文中分析了PSS约束预条件子的一些性质并证明了预处理迭代法的收敛性.最后用数值算例验证了该预条件子的有效性.
In this paper, a PSS-based constraint preconditioner, in which the (1,1) block of the preconditioner is constructed by the PSS iterative method for solving the non-Hermitian positive definite linear systems, is presented for the generalized saddle point problems with non-Hermitian (1,1) blocks. The invertibility of the PSS-based constraint preconditioner is analyzed and the convergence of the preconditioned iteration method is proved. Numerical experiments are illustrated to show the efficiency of the preconditioner as well as the corresponding preconditioned iterative method.

MR(2010)主题分类: 

()
[1] Bai Z Z, Golub G H, Lu L Z, Yin J F. Block triangular and skew-Hermitian splitting methods for positive-definite linear systems[J]. SIAM J. Sci. Comput., 2005 26(3): 844-863.

[2] Bai Z Z, Golub G H, Ng M K. Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems[J]. SIAM J. Matrix Anal. Appl., 2003, 24(3): 603-626.

[3] Bai Z Z, Golub G H, Pan J Y. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems[J]. Numer. Math., 2004 98:1-32.

[4] Bai Z Z, Li G Q. Restrictively preconditioned conjugate gradient methods of linear equations[J]. IMA J. Numer. Anal., 2003, 23: 561-580.

[5] Bai Z Z, Ng M K. On inexact preconditioners for nonsymmetric matrices[J]. SIAMJ. Sci. Comput., 2005, 26(5): 1710-1724.

[6] Bai Z Z, Ng M K, Wang Z Q. Constraint preconditioners for symmetric indefinite matrices[J]. SIAM J. Matrix Anal. Appl., 2009, 31(2): 410-433.

[7] Bai Z Z, Wang Z Q. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems[J]. J. Comput. Appl. Math., 2006, 187(2): 202-226.

[8] Benzi M, Golub G H. A preconditioner for generalized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2004, 26(1): 20-41.

[9] Benzi M, Golub G H, Liesen J. Numerical solution of saddle point problems[J]. Acta Numer., 2005, 14: 1-137.

[10] Botchev M A, Golub G H. A class of nonsymmetric preconditioners for saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2006, 27(4):1125-1149.

[11] Cao Y, Jiang M Q, Zheng Y L. A splitting preconditioner for saddle point problems [J]. Numer. Linear Algebra Appl., 2011, 18: 875-895.

[12] Cao Z H. A note on constraint preconditioning for nonsymmetric indefinite matrices[J]. SIAM J. Matrix Anal. Appl., 2002, 24: 121-125.

[13] Cao Z H. Constraint schur complement preconditioners for nonsymmetric saddle point problems[J]. Appl. Numer. Math., 2009 59: 151-169.

[14] Dollar H S. Constraint-style preconditioners for regularized saddle point problems[J]. SIAM J. Matrix Anal. Appl., 2007, 29(2): 672-684.

[15] Golub G H, Wathen A J. An iteration for indefinite systems and its application to the Navier- Stokes equations[J]. SIAM J. Sci. Comput., 1998, 19(2): 530-539.

[16] Keller C, Gould N I M, Wathen A J. Constraint preconditioning for indefinite linear systems[J]. SIAM J. Matrix Anal. Appl., 2000, 21(4): 1300-1317.

[17] 蒋美群, 曹阳. 广义鞍点问题的块三角预条件子[J]. 计算数学, 2010, 32 (1): 47-58.

[18] Jiang M Q, Cao Y, Yao L Q. On parameterized block triangular preconditioners for generalized saddle point problems[J]. Appl. Math. Comput., 2010, 216: 1777-1789.

[19] Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems[J]. Appl. Math. Comput., 2006, 172(2): 762-771.

[20] Saad Y. Iterative Methods for Sparse Linear Systems(2nd edn). SIAM: Philadelphia, 2003.

[21] Sturler E D, Liesen J. Block-diagonal and constraint preconditioners for nonsymmetric indefinite linear systems[J]. SIAM J. Sci. Comput., 2005, 26(5): 1598-1619.

[22] Zhang G F, Ren Z R, Zhou Y Y. On HSS-based constriant preconditioners for generalized saddlepoint problems[J]. Numer. Algor., 2011, 57: 273-287.
[1] 闫熙, 马昌凤. 求解矩阵方程AXB+CXD=F参数迭代法的最优参数分析[J]. 计算数学, 2019, 41(1): 37-51.
[2] 刘忠祥, 王翠薇, 王增琦. 求解时谐涡流模型鞍点问题的分块交替分裂隐式迭代算法的改进[J]. 计算数学, 2018, 40(3): 271-286.
[3] 郑华, 罗静. 一类H矩阵线性互补问题的预处理二步模基矩阵分裂迭代方法[J]. 计算数学, 2018, 40(1): 24-32.
[4] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[5] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
[6] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
[7] 潘春平. 关于Stokes和线性Navier-Stokes方程的广义维数分裂迭代方法[J]. 计算数学, 2014, 36(3): 231-244.
[8] 曹阳, 陶怀仁, 蒋美群. 鞍点问题的广义位移分裂预条件子[J]. 计算数学, 2014, 36(1): 16-26.
[9] 李姣芬, 彭振, 彭靖静. 矩阵不等式约束下矩阵方程AX=B的双对称解[J]. 计算数学, 2013, 35(2): 137-150.
[10] 刘仲云, 刘成志, 张育林. 对称正定Toeplitz方程组的多级迭代求解[J]. 计算数学, 2012, 34(4): 397-404.
[11] 曹阳, 谈为伟, 蒋美群. 广义鞍点问题的松弛维数分解预条件子[J]. 计算数学, 2012, 34(4): 351-360.
[12] 蒋美群, 曹阳. 广义鞍点问题的块三角预条件子[J]. 计算数学, 2010, 32(1): 47-58.
[13] 王丽平, 陈晓红. 一个拟极小化左共轭梯度算法及其数值表现[J]. 计算数学, 2009, 31(2): 127-136.
[14] 蔡放,熊岳山,骆志刚,. 块二级迭代法的近似最优内迭代次数[J]. 计算数学, 2008, 30(1): 89-98.
[15] 王学忠,黄廷祝,李良,傅英定,. H-矩阵方程组的预条件迭代法[J]. 计算数学, 2007, 29(1): 89-98.
阅读次数
全文


摘要