• 论文 • 上一篇    下一篇

Sine-Gordon方程的一类低阶非协调有限元分析

石东洋1, 张斐然2   

  1. 1. 郑州大学数学系, 郑州 450052;
    2. 商丘师范学院数学系, 河南商丘 476000
  • 收稿日期:2010-09-08 出版日期:2011-08-15 发布日期:2011-09-03
  • 基金资助:

    国家自然科学基金(No.10671184, No.10971203), 高等学校博士学科点专项科研基金(20094101110006), 河南省高等学校青年骨干教师基金资助项目.

石东洋, 张斐然. Sine-Gordon方程的一类低阶非协调有限元分析[J]. 计算数学, 2011, 33(3): 289-297.

Shi Dongyang, Zhang Feiran. A CLASS OF LOW ORDER NONCONFORMING FINITE ELEMENT ANALYSIS FOR SINE-GORDON EQUATION[J]. Mathematica Numerica Sinica, 2011, 33(3): 289-297.

A CLASS OF LOW ORDER NONCONFORMING FINITE ELEMENT ANALYSIS FOR SINE-GORDON EQUATION

Shi Dongyang1, Zhang Feiran2   

  1. 1. Department of Mathematics, Zhengzhou University, Zhengzhou, 450052, China;
    2. Department of Mathematics, Shangqiu Normal University, Shangqiu 476000, Henan, China
  • Received:2010-09-08 Online:2011-08-15 Published:2011-09-03
本文讨论了Sine-Gordon方程的一类低阶非协调有限元一般逼近格式,直接利用插值技巧和单元的特殊性质导出了相应未知量的最优误差估计.
In this paper general approximation scheme of low order nonconforming finite elements for Sine-Gordon equation is discussed, the optimal order error estimations of the corresponding unknown functions are derived based on interpolation technique and special properties of the elements.

MR(2010)主题分类: 

()
[1] B.D. Josephson. Possible new effects in superconductive tunneling[J]. Physics Letters, 1962, 1: 251-253.

[2] Zheng Qiang, Yue Ping and Gong Lunxun. New exact solutions of nonlinear Klein-Gordon equation[J]. Chinese Physics, 2006, 1: 23-35.

[3] He Hongsheng, Chen Jiang and Yang Kongqing. Exact solutions for the coupled Klein-Gordon-Schr$\breve[o]$dinger equations using the extended F-expansion method[J]. Chinese Physics, 2005, 10: 1920-1926.

[4] Lu Falin, Chen Changyuan and Sun Dongsheng. Bound states of Klein-Gordon equation for double ring-shaped oscillator scalar and vector potentials[J]. Chinese Physics, 2005, 3: 461-463.

[5] Zhang Xueao, Chen Ke and Duan Zhenglu. Bound states of Klein-Gordon equation and Dirac equation for ring-shaped non-spherical oscillator scalar and vector potentials[J]. Chinese Physics, 2005, 1:38-42.

[6] 周盛凡. 有阻尼Sine-Gordon方程的全局吸引子的维数[J]. 数学学报, 1996, 39(5): 597-601.

[7] Liang Zongqi. The global solution and numerical computation of the generalized nonlinear Sine-Gordon equation[J]. Mathematics Applicate, 2003, 16(4): 40-49.

[8] 许秋滨, 张鲁明.二维有阻尼方程的一个交替方向隐格式[J]. 应用数 学学报, 2007, 30(5): 836-846.

[9] 黄明游.发展方程数值计算方法[M]. 北京:科学出版社, 2004.

[10] 梁国平.变网格有限元法[J]. 计算数学, 1985, 7(4): 377-384.

[11] Shi Dongyang, Guan Hongbo. A class of C-R type nonconforming FEMs for parabolic VIPwith moving grid on anisotropic meshes[J]. Hokkaido Math.J., 2007, 36(4): 687-709.

[12] Shi Dongyang, Zhang Yiran. A nonconforming anisotropic finite element approximation with moving grids for Stokes problem[J]. J. Comput. Math., 2006, 24(5): 561-578.

[13] Jr.J. Douglas, J.E. Santos, D. Sheen and X Ye. Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems[J]. RAIRO Math. Model. Anal. Numer., 1999, 33(4): 747-770.

[14] J. Douglas, Jr., J. E .Santos and D. Sheen, A nonconforming mixed finite element method for Maxwell's equations[J]. Math. Meth. Appl. Sci., 2000, 10(4): 593-613.

[15] Lin Qun, L. Tobiska and ZHou Aihui. Superconvergence and extrapolation of nonconforming low order elements applied to the Poisson equation[J]. IMA J. Numer. Anal., 2005, 25(1): 160-181.

[16] Shi Dongyang, Mao Shipeng and Chen Shaochun. An anisotropic nonconforming finite element with some superconvergence results[J]. J. Comput. Math., 2005, 23(3): 261-274.

[17] R. Rannacher and S. Turek. Simple nonconforming quadrilateral Stokes element[J]. Numer. Meth. for PDEs., 1992, 8: 97-111.

[18] C.J. Park , D.W. Sheen . P1 nonconforming quadrilateral finite element method for second order elliptic problem[J]. SIAM J. Numer. Anal., 2003, 41(2): 624-640.

[19] 胡俊, 满红英, 石钟慈. 带约束非协调旋转Q1元在Stokes和平 面弹性问题的应用[J]. 计算数学, 2005, 27(3): 311-324.

[20] 石东洋, 王彩霞. Stokes问题非协调混合有限元超收敛分析[J]. 应 用数学学报, 2007, 30(6): 1056-1065.

[21] P. Knobloch, L. Tobiska. The P1mod element: a new nonconforming finite element for convection-diffusion problems[J]. SIAM J. Numer. Anal., 2003, 41(2): 436-456.

[22] Chen Shaochun, Shi Dongyang and Zhao Yongcheng. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes[J]. IMA J. Numer. Anal., 2004, 24(1): 77-95.

[23] Shi Dongyang, Hao Xiaobin. Accuracy analysis for quasi-Carey element[J]. Jrl. Syst. Sci. & Complexity, 2008, 21(3): 456-462.
[1] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[2] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[3] 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[4] 刘金存, 李宏, 刘洋, 何斯日古楞. 非线性分数阶反应扩散方程组的间断时空有限元方法[J]. 计算数学, 2016, 38(2): 143-160.
[5] 石东洋, 张厚超, 王瑜. 一类非线性四阶双曲方程扩展的混合元方法的超收敛分析[J]. 计算数学, 2016, 38(1): 65-82.
[6] 石东洋, 王芬玲, 樊明智, 赵艳敏. sine-Gordon方程的最低阶各向异性混合元高精度分析新途径[J]. 计算数学, 2015, 37(2): 148-161.
[7] 赵艳敏, 石东洋, 王芬玲. 非线性Schrödinger方程新混合元方法的高精度分析[J]. 计算数学, 2015, 37(2): 162-178.
[8] 罗振东. 非饱和土壤水流问题的CN有限元格式[J]. 计算数学, 2014, 36(4): 355-362.
[9] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[10] 石东洋, 王芬玲, 赵艳敏. 非线性sine-Gordon方程的各向异性线性元高精度分析新模式[J]. 计算数学, 2014, 36(3): 245-256.
[11] 腾飞,罗振东. 非饱和土壤水流方程的CN广义差分法[J]. 计算数学, 2014, 36(2): 205-214.
[12] 赵智慧, 李宏, 方志朝. 非定常Stokes方程的全离散稳定化有限元格式[J]. 计算数学, 2014, 36(1): 85-98.
[13] 石东洋, 张亚东. 抛物型方程一个新的非协调混合元超收敛性分析及外推[J]. 计算数学, 2013, 35(4): 337-352.
[14] 石东洋, 王芬玲, 史艳华. 各向异性EQ1rot非协调元高精度分析的一般格式[J]. 计算数学, 2013, 35(3): 239-252.
[15] 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.
阅读次数
全文


摘要