• 论文 • 上一篇    下一篇

求解非线性互补问题一个新的 Jacobian 光滑化方法

陈争1,2, 马昌凤1   

  1. 1. 福建师范大学数学与计算机科学学院, 福州 350007;
    2. 福建江夏学院信息技术系, 福州 350108
  • 收稿日期:2009-06-17 出版日期:2010-11-15 发布日期:2010-12-09
  • 基金资助:

    国家自然科学基金(11071041) 和 福建省自然科学基金(2009J01002) 资助项目.

陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.

Chen Zheng, Ma Changfeng. A NEW JACOBIAN SMOOTHING METHOD FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEM[J]. Mathematica Numerica Sinica, 2010, 32(4): 361-372.

A NEW JACOBIAN SMOOTHING METHOD FOR SOLVING NONLINEAR COMPLEMENTARITY PROBLEM

Chen Zheng1,2, Ma Changfeng1   

  1. 1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China;
    2. Department of Information Technology, Fujian Jiangxia College, Fuzhou 350108, China
  • Received:2009-06-17 Online:2010-11-15 Published:2010-12-09
本文构造了非线性互补问题一个新的光滑逼近函数, 分析了该函数的一些基本性质. 利用这一新的光滑逼近函数建立了求解非线性互补问题的一个 Jacobi  光滑化方法, 并证明了在适当的条件下这一算法是全局及局部超线性收敛的. 数值结果表明该方法是有效的.

 

In this paper, a new smoothing approximation function of NCP is given and its some properties are analyzed. By this new function, a new Jacobian smoothing method for P0-NCP is proposed. The presented method is globally and locally superlinearly convergent under suitable conditions. Some numerical results show that this method is effective for the given problem.

 

MR(2010)主题分类: 

()

[1] Harker P T and Pang J S. Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications[J]. Mathematical Programming, 1990, 48(1): 161-220.
[2] Ferris M C and Pang J S. Engineering and economic applications of complementarity problems[J]. SIAM Review, 1997, 39(3): 669-713.
[3] Fischer A. An NCP-function and its use for the solution of complementarity problems, in: D. Du, L. Qi and R. Womersley, eds., Recent Advances in Nonsmooth Optimization (World Scientific Publishers, New Jersy, 1995, 88-105.
[4] Chen X, Qi L and Sun D. Global and superlinear convergence of the smoothing Newton method and its application to general box-constrained variational inequalities[J]. Mathematics of Computation, 1998, 67(1): 519-540.
[5] Chen B and Harker P T. Smoothing approximations to nonlinear complementarity problems[J]. SIAM Journal on Optimization, 1997, 7(1): 403- 420.
[6] Kanzow C. Some noninterior continuation methods for linear complementarity problems[J]. SIAM J. Matrix Anal., 1996, 17: 178-193.

[1] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[2] 闫熙, 马昌凤. 求解矩阵方程AXB+CXD=F参数迭代法的最优参数分析[J]. 计算数学, 2019, 41(1): 37-51.
[3] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[4] 李郴良, 田兆鹤, 胡小媚. 一类弱非线性互补问题的广义模系矩阵多分裂多参数加速松弛迭代方法[J]. 计算数学, 2019, 41(1): 91-103.
[5] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[6] 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362.
[7] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
[8] 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418.
[9] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[10] 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274.
[11] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[12] 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.
[13] 孙清滢, 付小燕, 桑兆阳, 刘秋, 王长钰. 基于简单二次函数模型的带线搜索的信赖域算法[J]. 计算数学, 2010, 32(3): 265-274.
[14] 来翔, 袁益让. 一类三维拟线性双曲型方程交替方向有限元法[J]. 计算数学, 2010, 32(1): 15-36.
[15] 杨大地,刘冬兵,. 一类A(α)稳定的k阶线性k步法公式[J]. 计算数学, 2008, 30(2): 143-146.
阅读次数
全文


摘要