• 论文 • 上一篇    下一篇

二阶椭圆问题新的混合元格式

陈绍春, 陈红如   

  1. 郑州大学数学系, 郑州 450001
  • 收稿日期:2009-09-20 出版日期:2010-05-15 发布日期:2010-06-30
  • 基金资助:

    国家自然科学基金(10771198)

陈绍春, 陈红如. 二阶椭圆问题新的混合元格式[J]. 计算数学, 2010, 32(2): 213-218.

Chen Shaochun, Chen Hongru. NEW MIXED ELEMENT SCHEMES FOR SECOND ORDER ELLIPTIC PROBLEM[J]. Mathematica Numerica Sinica, 2010, 32(2): 213-218.

NEW MIXED ELEMENT SCHEMES FOR SECOND ORDER ELLIPTIC PROBLEM

Chen Shaochun, Chen Hongru   

  1. Department of Mathematics, Zhengzhou University, Zhengzhou 450001, China
  • Received:2009-09-20 Online:2010-05-15 Published:2010-06-30
本文基于二阶椭圆问题一种新的混合变分形式,给出同时满足强椭圆性和B-B条件的任意次的求解格式.理论分析表明这些单元论证简单而且用了较少的自由度达到最优误差估计.同时我们还给出了它们在各向异性网格下的误差估计.

 

In this paper, based on a new mixed variational form for second order elliptic problem, we present some new solving schemes of any order which satisfy strongly elliptic condition and B-B condition. Theory analysis show that these schemes are simple and convenient. Moreover, we obtain optimal error estimates on the anisotropic meshes.

 

MR(2010)主题分类: 

()

[1] Falk R S, Osborn J E. Error estimates for mixed methods. RAIRO, Numer, Anal, 1980, 14(3): 249-277.
[2] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社. 2006.
[3] Raviart P A, Thomas J M. A mixed finite element method for second order elliptic problems. Lecture notes in math, Berlin-Heidelberg Newyork Springer, 1977, 66: 292-315.
[4] 罗振东. 二阶椭圆方程的混合有限元分析[J]. 应用数学, 1992, 5(4): 26-31.
[5] 罗振东. 二阶椭圆问题的混合有限元估计[J]. 应用数学学报, 1993, 16(4): 473-476.
[6] 宋士仓, 陈绍春, 李镇. 二阶椭圆问题求解的拟一次混合元格式[J]. 数值计算与计算机应用, 2005, (2): 126-134.
[7] 段火元, 梁国平. 二阶椭圆问题的混合元方法[J]. 计算数学, 2001, 23(4): 417-428.
[8] Chen S C, Shi D Y, Zhao Y C. Anisotropic interpolation and quasi-wilson element for narrow quadrilateral meshs[J]. IMA. J. Numer Anal, 2004, 24: 77-95.
[9] Chen S C, Zhao Y C, Shi D Y. Anisotropic interpolation with application to nonconforming elements[J]. Appl Numer Math, 2004, 49: 135-152.
[10] Chen S C, Xiao L C. Interpolation theory of anisotropic finite elements and applications. Science in china. Series A: Mathematics, 2008, 51(8): 1-15.
[11] 王烈衡, 许学军. 有限元方法的数学基础[M]. 北京: 科学出版社, 2004.
[12] Ciarlet P G. The finite element method for elliptic problems[M]. North-Holland, Amsterdam, 1978.
[13] Durán R G. Error estimates for anisotropic finite elements and applications, Report (45 minutes), in Proceedings of the International Congress of Mathematicians, Madrid, 2006.

[1] 司红颖, 魏先勇, 陈绍春. 二阶椭圆问题的一类广义有限元法[J]. 计算数学, 2016, 38(4): 405-411.
[2] 孙萍; 罗振东; 陈静. 二阶椭圆问题的混合有限元法的泡函数稳定性及其后验误差估计[J]. 计算数学, 2008, 30(3): 327-336.
[3] 段火元,梁国平. 二阶椭圆问题的混合元方法[J]. 计算数学, 2001, 23(4): 417-428.
阅读次数
全文


摘要