• 论文 • 上一篇    下一篇

一类三维拟线性双曲型方程交替方向有限元法

来翔, 袁益让   

  1. 山东大学数学学院, 济南 250100
  • 收稿日期:2007-01-24 出版日期:2010-02-15 发布日期:2010-03-30
  • 基金资助:

    山东省自然科学基金青年项目(批准号: Q2007A03)

来翔, 袁益让. 一类三维拟线性双曲型方程交替方向有限元法[J]. 计算数学, 2010, 32(1): 15-36.

Lai Xiang, Yuan Yirang. GALERKIN ALTERNATING-DIRECTION METHODS FOR A KIND OF THREE-DIMENSIONAL QUASI-LINEAR HYPERBOLIC EQUATIONS[J]. Mathematica Numerica Sinica, 2010, 32(1): 15-36.

GALERKIN ALTERNATING-DIRECTION METHODS FOR A KIND OF THREE-DIMENSIONAL QUASI-LINEAR HYPERBOLIC EQUATIONS

Lai Xiang, Yuan Yirang   

  1. Department of Mathematics, Shandong University, Jinan 250100, China
  • Received:2007-01-24 Online:2010-02-15 Published:2010-03-30
对一类一般的三维拟线性双曲型方程通过转化二阶时间导数得到关于一阶时间导数的耦合方程组,然后进行离散得到交替方向有限元格式, 应用微分方程先验估计的理论和技巧得到了最优阶H1-模和L2-模误差估计,并给出了数值算例, 数值结果和理论分析得到很好的吻合.

 

A kind of second-order three-dimensional quasi-linear hyperbolic equation is firstly transformed into a system of first-order equations, then the Galerkin alternating-direction procedure for the system is derived. The optimal order estimates in H1 norm and L2 norm of the procedure are obtained respectively by using the theory and techniques of priori estimate of differential equations. The numerical experiment is also given to support the theoretical analysis. Comparison the results of numerical example with the theoretical analysis shows they are uniform.

 

MR(2010)主题分类: 

()

[1] Douglas J Jr, Dupont T. Alternating direction Galerkin method on rectangles. Proc. Symposium on Numerical Solution of Partial Differential Equation Ⅱ[C]. B. Hubbarded. Academic Press. New York, 1971, 133-214.
[2] Dendy J E, Fairweather G. Alternating-Galerkin methods for parabolic and hyperbolic problems on rectangular polygon[J]. SIAM J. Numer. Anal., 1975, 12(2): 144-162.
[3] Fernandes R I, Fairweather G. An alternating-direction Galerkin method for a class of second-order hyperbolic equation in two space variables[J]. SIAM J. Numer. Anal., 1991, 28(5): 1265-1281.
[4] Cui Xia. The alternation-direction finite element methods and relative numerical analysis for some types of evolution equation[D]. Jinan: Shangdong University, 1999.
[5] Liuxiaohua. Finite element methods and generalized difference methods for evolution equation[D]. Jinan: Shangdong University , 2001.
[6] 陈蔚. 几类发展方程的交替方向有限元方法及隐-显多步有限元方法[D]. 济南: 山东大学, 2000.
[7] 许兰图. 二阶双曲型方程的交替有限元分析[D]. 济南: 山东大学, 2006.
[8] 沈平平, 刘明新, 汤磊. 石油勘探开发中的数学问题[M]. 北京: 科 学出版社, 2002.
[9] 袁益让. 能源数值模拟计算方法的理论和应用[J]. 高校计算数学学报, 1999, 21(4): 311-315.
[10] 袁益让. 计算石油地质等领域的一些新进展[J]. 计算物理, 2003, 20(4): 283-290.
[11] Wheeler M F. A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations[J]. SIAM J. Numer. Anal., 1973, 10: 723-759.
[12] Baker G A. Error estimates for finite element methods for second order hyperbolic equations[J]. SIAM J. Numer. Anal., 1976, 13: 723-759.

[1] 古振东, 孙丽英. 非线性第二类Volterra积分方程的Chebyshev谱配置法[J]. 计算数学, 2020, 42(4): 445-456.
[2] 王志强, 文立平, 朱珍民. 时间延迟扩散-波动分数阶微分方程有限差分方法[J]. 计算数学, 2019, 41(1): 82-90.
[3] 陈圣杰, 戴彧虹, 徐凤敏. 稀疏线性规划研究[J]. 计算数学, 2018, 40(4): 339-353.
[4] 古振东, 孙丽英. 一类弱奇性Volterra积分微分方程的级数展开数值解法[J]. 计算数学, 2017, 39(4): 351-362.
[5] 刘丽华, 马昌凤, 唐嘉. 求解广义鞍点问题的一个新的类SOR算法[J]. 计算数学, 2016, 38(1): 83-95.
[6] 刘冬兵, 马亮亮. 一类隐式的k+1阶线性k步法[J]. 计算数学, 2013, 35(4): 393-400.
[7] 黄娜, 马昌凤, 谢亚君. 求解非对称代数Riccati 方程几个新的预估-校正法[J]. 计算数学, 2013, 35(4): 401-418.
[8] 陈绍春, 梁冠男, 陈红如. Zienkiewicz元插值的非各向异性估计[J]. 计算数学, 2013, 35(3): 271-274.
[9] 任志茹. 三阶线性常微分方程Sinc方程组的结构预处理方法[J]. 计算数学, 2013, 35(3): 305-322.
[10] 张亚东, 石东洋. 各向异性网格下抛物方程一个新的非协调混合元收敛性分析[J]. 计算数学, 2013, 35(2): 171-180.
[11] 刘冬兵, 马亮亮. 一类显式的k阶线性k步法基本公式[J]. 计算数学, 2013, 35(1): 31-39.
[12] 陈争, 马昌凤. 求解非线性互补问题一个新的 Jacobian 光滑化方法[J]. 计算数学, 2010, 32(4): 361-372.
[13] 吴宏伟. 关于广义KPP方程的数值解[J]. 计算数学, 2009, 31(2): 137-150.
[14] 高夫征; 芮洪兴. 求解线性Sobolev方程的分裂型最小二乘混合元方法[J]. 计算数学, 2008, 30(3): 269-282.
[15] 孙清滢,刘新海. 结合广义Armijo步长搜索的一类新的三项共轭梯度算法及其收敛特征[J]. 计算数学, 2004, 26(1): 25-36.
阅读次数
全文


摘要