• 论文 • 上一篇    下一篇

三维电阻抗成像的体积元方法的数值模拟和分析

李久平,袁益让,   

  1. 山东大学 数学与系统科学学院,山东大学,数学与系统科学学院,,济南 250100,济南 250100
  • 出版日期:2008-01-14 发布日期:2008-01-14

李久平,袁益让,. 三维电阻抗成像的体积元方法的数值模拟和分析[J]. 计算数学, 2008, 30(1): 59-74.

SIMULATION AND ANALYSIS OF FINITE VOLUME METHOD FOR 3-DIMENSIONAL ELECTRICAL IMPEDANCE TOMOGRAPHY

  1. Li Jiuping Yuan Yirang (School of Mathematics and System Sciences,Shandong University,Jinan 250100,China)
  • Online:2008-01-14 Published:2008-01-14
电阻抗成像是一类椭圆方程反问题,本文在三维区域上对其进行数值模拟和分析.对于椭圆方程Neumann边值正问题,本文提出了四面体单元上的一类对称体积元格式,并证明了格式的半正定性及解的存在性;引入单元形状矩阵的概念,简化了系数矩阵的计算;提出了对电阻率进行拼接逼近的方法来降低反问题求解规模,使之与正问题的求解规模相匹配;导出了误差泛函的Jacobi矩阵的计算公式,利用体积元格式的对称性和特殊的电流基向量,将每次迭代中需要求解的正问题的个数降到最低.一系列数值实验的结果验证了数学模型的可靠性和算法的可行性.本文所提出的这些方法,已成功应用于三维电阻抗成像的实际数值模拟.
Electrical impedance tomography is an inverse problem of elliptic differential equations, numerical simulation and analysis for it in 3-dimensional domain are presented.In this paper a modified symmetric finite volume element method is proposed,positive semi-definiteness and existence of solution for this scheme are proved;element geometry matrix is introduced, which is helpful for simplifying the calculation of coefficient matrix;patch approximation for electrical resistivity is present to lower the scale of this inverse problem;the computational formula of Jacobian matrix of error functional is obtained,a class of electrical current pat- terns is proposed,under which the number of direct problems to be solved at each iteration can be reduced to the least.A series of numerical experiments verify the reliability of its mathematical model and the feasibility of the algorithm.These methods have been applied successfully in practical simulation of electrical impedance tomography.
()

[1]Cheney M,Isaacson D,Newell J C.Electrical Impedance Tomography
[J].SIAM Rev.,1999,41(1): 85-101.
[2]Breckon W R,Pidcock M K.Mathematical aspects of impedance imaging
[J].Clin.Phys.Physiol. Meas.,1987,8(Suppl):77-84.
[3]Borcea L,Gray G A,Zhang Y.Variationally constrained numerical solution of electrical impedance tomography
[J].Inverse Problems,2003,19(5):1159-1184.
[4]Lechleiter A,Rieder A.Newton regularizations for impedance tomography:a numerical study
[J]. Inverse Problems,2006,22:1967-1987.
[5]Du Y,Cheng J,Liu Z.Combined variable metric method for electrical impedance tomography problem
[J].Chin.J.Biomed.Eng.(in Chinese),1997,16(2):167-173.
[6]Tamburrino A,Rubinacci G.A new non-iterative inversion for electrical resistance tomography
[J]. Inverse Problems,2002,18(6):1809-1829.
[7]Hanke M,Brühl M.Recent progress in electrical impedance tomography
[J].Inverse Problems, 2003,19:S65-S90.
[8]Webster J G.Electrical Impedance Tomography
[M].Adam Hilger,Bristol England,1990.
[9]Kitsch A.An introduction to the mathematical theory of inverse problems
[M].Number 120 in Applied Mathematical Sciences.Springer-Verlag,New York,1996.
[10]Xiao T,Yu S,Wang Y.Numerical solution for inverse problems(in Chinese)
[M].Beijing:Science Press,2003.
[11]Mishev I D.Finite volume methods on Voronoi meshes
[J].Numer.Methods P.D.E,1998,14: 193-212.
[12]Li R,Zhu P.Generalized differenc methods for 2nd order elliptic partial differential equations (Ⅰ)
[J].Numer.Math.J Chin.Univ.,1982,(2):140-151.
[13]Li R,Chen Z.Generalized difference methods for differential equations(in Chinese)
[M]. Changchun:Jilin University Press,1994.
[14]Yuan Y,Sun W.Theory and methods of optimization(in Chinese)
[M].Beijing:Science Press, 1997.
[15]Hayes L J.Galerkin alternating-direction methods for nonrecutangular regions using patch ap- proximations
[J].SIAM J.Numer.Anal.,1981,18(4):627-643.
[16]Hayes L J.A modified backward time discretization for nonlinear parabolic equations using patch approximations
[J].SIAM J.Numer.Anal.,1981,18(5):781-793.
[17]Li T,Qin T.Physics and partial differntial equations(in Chinese)
[M].Beijing:Advanced Education Press,Second edition,2005.
[18]Liu J.Regularization methods for ill-posed problems and its application(in Chinese)
[M].Beijing: Science Press,2005.
No related articles found!
阅读次数
全文


摘要