• 论文 • 上一篇    下一篇

不适定问题的迭代Tikhonov正则化方法

傅初黎,李洪芳,熊向团,   

  1. 兰州大学数学与统计学院,兰州大学数学与统计学院,兰州大学数学与统计学院 兰州,730000,兰州,730000,兰州,730000
  • 出版日期:2006-03-14 发布日期:2006-03-14

傅初黎,李洪芳,熊向团,. 不适定问题的迭代Tikhonov正则化方法[J]. 计算数学, 2006, 28(3): 237-246.

ITERATED TIKHONOV REGULARIZATION FOR ILL-POSED PROBLEMS

  1. Fu Chuli Li Hongfang Xiong Xiangtuan (School of Mathematics and Statistics,Lanzhou University,Lanzhou,730000,China)
  • Online:2006-03-14 Published:2006-03-14
Tikhonov正则化方法是研究不适定问题最重要的正则化方法之一,但由于这种方法的饱和效应,使得不可能随着解的光滑性假设的提高而提高收敛率,即不能使正则解与准确解的误差估计达到阶数最优.本文所讨论的迭代的Tikhonov正则化方法对此进行了改进,保证了误差估计总可以达到阶数最优.数值试验结果表明计算效果良好.
Tikhonov regularization is one of the most important regularization methods for the study of ill-posed problems.But because of the saturation effect of this method it is impossible that the convergence rate can be improved with increasing smoothness assumption of solution,i.e.,the error estimate between the exact and approximate solutions can not be order optimal.The iterated Tikhonov regulariza- tion prevent saturation effects,such that for any smoothness asumption the error estimate can always be order optimal for appropriate choice of iterated times.
()

[1]Vainikko G.,On the Optimality of Methods for Ill-Posed Problems,Z.Anal.Anw.,6:4(1987),351-362.
[2]Kirsch A.,An Introduction to the Mathematical Theory of Inverse Problems,New York:Springer-Verlag,1996.
[3]Engl H.W.,Hanke M.and Neubauer A.,Regularization of Inverse Problems,Dordrecht:Kluwer Acdemic Publishers,1996.
[4]Schr(?)ter T.and Tautenhahn U.,On the Optimality of Regularization Methods for Solving Linear Ill-Posed Problems,Z.Anal.Anw.,13:4(1994),697-710.
[5]Tautenhahn U.,Optimality for Ill-Posed Problems Under General Source Conditions,Numer.Funct.Anal.and Optiraiz,19(1998),377-398.
[6]朱佑彬,傅初黎,邱春雨,一类不适定问题具备停止规则的简化迭代技巧,兰州大学学报,38:2(2002),1-6.
[7]Kato T.,Perturbation Theory for Linear Operaors,New York:Springer-Verlag,1966.
No related articles found!
阅读次数
全文


摘要