• 论文 • 上一篇    下一篇

一类边界耦合的扩散系统爆破现象的数值模拟

江成顺,姚俐,李清善,   

  1. 信息工程大学信息工程学院,信息工程大学信息工程学院,郑州大学 郑州 450002,郑州 450002,郑州 450052
  • 出版日期:2006-01-14 发布日期:2006-01-14

江成顺,姚俐,李清善,. 一类边界耦合的扩散系统爆破现象的数值模拟[J]. 计算数学, 2006, 28(1): 31-42.

NUMERICAL SIMULATION OF BLOW-UP FOR SOME DIFFUSION SYSTEMS WITH COUPLING AT THE BOUNDARY

  1. Jiang Chengshun Yao Li (Institute of Information Engineering, University of Information Engineering, Zhengzhou 450002, China) Li Qianshan (Zhengzhou University, Zhengzhou 450052, China)
  • Online:2006-01-14 Published:2006-01-14
对一类边界上非平凡耦合的抛物型系统进行了数值模拟.为验证已有的关于是否出现爆破的理论成果,先用固定网格算法针对四种具体的边界条件进行试验,并根据不同的初始数据分组.为了进一步探讨爆破发生的时刻、位置以及爆破速率,再用移动网格算法针对可能出现爆破现象的两组边界条件和初始数据进行试验,并根据不同的监测函数分组.随后对算法的有效性做出说明并分析试验结果.最后对系统的一种特殊情况给出一个算例.
For some diffusion systems with nontrivial coupling at the boundary, numerical simulations are performed. The problems about when and where the blow-up probably occurs and the blow-up rate are discussed. Based upon different initial data, the experiments are divided into four groups and carried on with twelve kinds of boundary parameters. For the two kinds of boundary parameters which probably lead blow-up, experiments are classified by monitor functions and performed using moving mesh methods. Then the validity of algorithms is expounded and the results of experiments are analyzed. Finally an experiment is presented for a special case.
()

[1] H. Amann, Parabolic evolution equations and nonlinear boundary conditions, J. Differential Equations, 72 (1988), 201-269.
[2] J.D. Rossi, On existence and nonexistence in the large for an Ndimensional system of heat equations with nontrivial coupling at the boundary, New Zealand J. Math., 26:2(1997), 275-285.
[3] J.P. Pinasco, J.D. Rossi, Simultaneous vs. nonsimultaneous blow-up, New Zealand J. Math., 29:1(2000), 55-59.
[4] Z.G. Lin, M.X. Wang, The blow-up properties of solutions to similinear heat equations with nonlinear boundary conditions, Z. Angrew. Math. Phys., 50:3 (1999), 361-374.
[5] S.T. Li, L.R. Petzold, Y.H. Ren, Stability of moving mesh systems of partial differential equations, SIAM J. Sci. Comput, 20(1998), 719-738.
[6] Z.J. Tan, Z.R. Zhang, Y.Q. Huang, T.Tang, Moving mesh methods with locally varying time steps, J. Comput Phys., 200(2004), 347-367.
[7]D.Germund等著,包雪松译,数值方法,高等教育出版社,1990.
[8]胡健伟,汤怀民,微分方程数值方法,科学出版社,1999.
No related articles found!
阅读次数
全文


摘要