• 论文 •

### 线性流形上的广义中心对称矩阵反问题

1. 南京航空航天大学理学院,南京航空航天大学理学院 南京 210016 华东船舶工业学院数理系,镇江 212003 ,南京 210016
• 出版日期:2005-04-14 发布日期:2005-04-14

### INVERSE PROBLEMS OF GENERALIZED CENTROSYMMETRIC MATRICES ON THE LINEAR MANIFOLD

1. Yuan Yongxin (College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; Dept. of Mathematics and Physics, East China Shipbuilding Institute, Zhenjiang 212003, China) Dai Hua (College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)
• Online:2005-04-14 Published:2005-04-14

Let R∈Cn×n satisfying R = RH=R-1≠±In be a nontrivial generalized reflexive matrix. A∈Cn×n is said to be generalized centrosymmetric if RAR = A. The set of all n×n generalized centrosymmetric matrices is denoted by GCSCn×n. Let X1,Z1∈Cn×k1,Y1,W1∈Cn×l1,S = {A|‖AX1-Z1‖2+‖Y1HA-W1H‖2= min, A∈GCSCn×n}. The following problems are considered. Problem Ⅰ. Given Z2,X2∈ Cn×k2;Y2,W2 ∈Cn×l2, find A∈S such that where ‖·‖ is the Frobenius norm. Problem Ⅱ. Given A∈Cn×n, find A ∈ SE such that where SE is the solution set of Problem Ⅰ. The general form of the solution set SE of Problem Ⅰ is given. Sufficient and necessary conditions for matrix equations AX2=Z2,Y2HA = W2H having a solution A∈S are derived, and the general solutions are given. The expression of the solution to Problem Ⅱ is presented. A numerical example is provided.

()
 [1] H.C. Chen, Generalized reflexive matrices: special properties and applications [J], SIAM J. Matrix Anal. Appl, 19(1998), 140-153. [2] W.F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry [J], Linear Algebra Appl, 377(2004), 207-218. [3] W.F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry [J], Linear Algebra Appl., 380(2004), 199- 211. [4] A.L. Andrew, Eigenvectors of certain matrices [J], Linear Algebra Appl., 7(1973), 151-162. [5] A.L. Andrew, Solution of equations involving centrosymmetric matrices [J], Technometrics, 15(1973), 405-407. [6] A.L. Andrew, Centrosymmetric matrices [J], SIAM Rev, 40(1998), 697-698. [7] A. Cantoni, P. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matri- ces [J], Linear Algebra Appl, 13(1976), 275-288. [8] I.J. Good, The inverse of a centrosymmetric matrix [J], Technometrics, 12(1970), 925-928. [9] W.C. Pye, T.L. Boullion and T.A. Atchison, The pseudoinverse of a centrosymmetric matrix [J], Linear Algebra Appl, 6(1973), 201-204. [10] J.R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors [J], Amer Math Monthly, 92(1985), 711-717. [11] F.Z. Zhou, X.Y. Hu and L. Zhang, The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices [J], Linear Algebra Appl, 364(2003), 147-160. [12]戴华,线性流形上的逆特征值问题 [J],高等学校计算数学学报,17:4(1995),357-366． [13]张磊,谢冬秀, 一类逆特征值问题 [J],数学物理学报,13:1(1993),94-99． [14]戴华,矩阵论 [M],北京:科学出版社,2001．
 No related articles found!