• 论文 • 上一篇    下一篇

变系数抛物方程的有限元强校正格式

赖军将,朱起定   

  1. 湖南师范大学数学与计算机科学学院,湖南师范大学数学与计算机科学学院 长沙 410081 ,长沙 410081
  • 出版日期:2005-04-14 发布日期:2005-04-14

赖军将,朱起定. 变系数抛物方程的有限元强校正格式[J]. 计算数学, 2005, 27(4): 355-368.

A ULTRACONVERGENT CORRECTED SCHEME FOR FINITE ELEMENT METHOD OF VARIABLE COEFFICIENTS PARABOLIC EQUATIONS

  1. Lai Junjiang Zhu Qiding (College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)
  • Online:2005-04-14 Published:2005-04-14

本文利用投影型插值和Ritz-Volterra投影研究一维变系数抛物方程的有限元方法,直接得到导数和位移的一个强校正格式.对于有限元解,分别对应力和位移获得整体的hk+2和hk+3阶的强结果.

In this paper we will considers the finite element method for variable coefficients parabolic equations of one space dimension using projection interpolation and Ritz-Volterra projection. A ultraconvergent corrected scheme for the derivative and displacement is obtained and proved directly. For finite element solution, we can obtain global hk+2 and hk+3 order ultraconvergent results for stress and displacement through correcting, respectively.

()


[1] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery and a posterior estimates, Part 1: The recovery technique, Int. Numer. Methods Eng., 33 (1992), 1331-1364.
[2] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery and a posterior estimates. Part 2: Error estimates and adaptivity, Int. Numer. Methods Eng., 33 (1992), 1365-1382.
[3] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery(SPR) and adaptive finite element refinement, Comput. Methods Appl. Mech. Eng., 101 (1992), 207-224.
[4] Z. Zhang, Ultraconvergence of the patch recovery technique, Math. Comp., 65 (1996), 1431-1437.
[5]张铁,导数小片插值恢复技术与超收敛性,计算数学,23(2001),1-8.
[6] Q.D. Zhu and Q.H. Zhao, SPR technique and finite element correction, Numer. Math., 96 (2003), 185-196.
[7]陈传淼,有限元超收敛构造理论,湖南科技出版社,长沙,2001.
[8] Q.D. Zhu and J.J. Lai, A ultraconvergence corrected scheme for finite element method of variable coefficients two-point boundary value problem, 2003. (Submitted)
[9] J.R. Cannon and Y.P. Lin, Nonclassical H1 projection and Galerkin methods for nonlinear parabolic integro-differential equations, Calcolo, 25 (1988), 187-201.
[10]林群,朱起定,有限元的预处理与后处理理论,上海科技出版社,上海,1994.
[11]张铁,发展型积分-微分方程的有限元方法,东北大学出版社,沈阳,2001.
[12] T. Zhang, The stability and approximation properties of Ritz-Volterra projection and application, Numer. Math. J. of Chinese Univ., 6 (1997), 57-76.
[13] C.M. Chen and T.M. Shin, Finite element methods for intergro-differential equations, World Scientific Pub Co, Singapore, 1998.
[14]朱起定,林群,有限元超收敛理论,湖南科技出版社,长沙,1989.
[15] Y.P. Lin, V. Thomee and L.B. Wahlbin, Ritz-Volterra projection of finite element spaces and application to integro-differential and related equations, SIAM J. Numer. Anal., 28 (1991), 1047-1070.
[16]张铁,抛物型积分-微分方程有限元近似的超收敛性质,高等学校计算数学学报,3(2001),193—201.
[17] P.K. Moore, A posteriori error estimation with finite element semi- and fully discrete methods for nonlinear parabolic equations in one space dimension, SIAM J. Numer. Anal., 31 (1994), 149-169.
[18] P.K. Moore, Interpolation error-based a posteriori error estimation for two-point boundary value problems and parabolic equations in one space dimension, Numer. Math., 90 (2001), 149-177.

No related articles found!
阅读次数
全文


摘要