• 论文 • 上一篇    下一篇

问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近

石东洋,毛士鹏,陈绍春   

  1. 郑州大学数学系,郑州大学数学系,郑州大学数学系 郑州,450052 ,郑州,450052 ,郑州,450052
  • 出版日期:2005-01-14 发布日期:2005-01-14

石东洋,毛士鹏,陈绍春. 问题变分不等式的一类各向异性Crouzeix-Raviart型有限元逼近[J]. 计算数学, 2005, 27(1): 45-54.

A CLASS OF ANISOTROPIC CROUZEIX-RAVIART TYPE FINITE ELEMENT APPROXIMATIONS TO SIGNORINI VARIATIONAL INEQUALITY PROBLEM

  1. Shi Dongyang Mao Shipeng Chen Shaochun (Mathematics Department of Zhengzhou University, Zhengzhou 450052)
  • Online:2005-01-14 Published:2005-01-14
本文研究了Signorini变分不等式问题的一类各向异性Crouzeix-Raviart型非协调有限元逼近。通过一些新的技巧,得到了相应的最优误差估计。
In this paper, a class of anisotropic Crouzeix-Raviart type nonconforming finite element approximations to Signorini variational inequality problem are proposed. The optimal error estimates are obtained without the regularity assumption or quasi-uniform assumption on meshes by using some novel approaches.
()

[1] J. Haslinger, I. Hlavacek and J.Necas, Numerical method for unilateral contact in solidmechanics, Handbook of Numerical Analysis, Vol., IV, Part 2. Eds, P. G. Ciarlet and J.L. Lions, North-Holland, 1996.
[2] F. B. Belgacem, Numerical solution of some varitional inequalities arisen from unilateralcontact problems by the finite element methods, SIAM. J. Numer. Anal, 37 (2000),1198-1216.
[3] F. B. Belgacem, P. Hild and P. Laborde, Extension of the mortar finite element to avaritional inequality modeling unilateral contact, Math. Model. Meth. Appl. Sci., 9(1999),287-303.
[4] L. H. Wang, Nonconforming finite element approximation of unilateral problem, J. Comp.Math., 17 (1999), 15-25.
[5] L. H. Wang, On the error estimat of nonconforming finite element approximation to theobstacle problem, Journal of Computational Mathematics, 21:4(2003), 481-490.
[6] Th. Apel, M. Dobrowolski, Anisotropic interpolation with applications to the finite elementmethod, Computing, 47 (1992), 277-293.
[7] Th. Apel, Anisotropic finite elements: local estimate and applications, B.G.TeubnerStuttgart. Leipzig, 1999.
[8] A. Zenisek, M. Vanmaele. The interpolation theory for narrow quadrilateral isoparametricfinite elements, Numer. Math., 72 (1995), 123-141.
[9] R. Rannacher, St. Turek, Simple nonconforming quadrilateral stokes element, Numer.Meth. Partial Differ. Equations, 8(1992), 97-111.
[10] Th. Apel, Serge Nicaise, Joachim Schoberl, Crouzeix-Raviart type finite elements onanisotropic meshes, Numer. Math., 89 (2001), 193-223.
[11] R. Falk, Error estimats for the approximation of a class of varitional inequalities, Math.Comput., 28 (1974), 963-971.
[12] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
[13] S. C. Chen, D. Y. Shi, Y. C. Zhao, Narrow arbitrary quadrilateral quasi-Wilson element,IMA. Numer. Anal., 24 (2004), 77-95.
No related articles found!
阅读次数
全文


摘要