• 论文 •

### 矩阵方程X+A~*X~(-q)A=I(q>0)的Hermite正定解

1. 山东大学数学与系统科学学院,山东大学数学与系统科学学院,山东大学数学与系统科学学院 济南, 250100 ,济南, 250100 ,济南, 250100
• 出版日期:2004-01-14 发布日期:2004-01-14

### THE HERMITIAN POSITIVE DEFINITE SOLUTIONS OF MATRIX EQUATION X + A~*X~(-q)A = I(q > 0)

1. Wang Jinfang Zhang Yuhai Zhu Benren (School of Mathematics and System Sciences, Shandong University, Jinan, 250100)
• Online:2004-01-14 Published:2004-01-14
1.引言 本文研究矩阵方程 X+A*X-qA=I (1)的Hermite正定解,其中I是一个n×n阶单位矩阵, A是一个n×n阶复矩阵, q是实数且q>0.q=1,q=2时的方程是从动态规划,随机过滤,控制理论和统计学中推导出来的,最近已有许多人对此进行了研究(见参考文献[1,2,4]),本文我们将研究方程(1)的解的存在性和解的性质,并讨论迭代求解及迭代解的收敛性. 对于Hermite矩阵X和Y,文中X≥Y表示X-Y是半正定的,X>y表示X-Y是正定的;对于方阵M,M*表示M的共轭转置,ρ(M)表示M的谱半径,λi(M)
We study the Hermitian positive definite solutions of the matrix equation X + A*X-qA = I with q > 0. Some properties of the solutions and the basic fixed point iterations for the equation are also discussed in some detail. Some of results in [Linear Algebra Appl., 279 (1998), 303-316], [Linear Algebra Appl, 326 (2001), 27-44] and [Linear Algebra Appl. 372 (2003), 295-304] are extended.
()
  I.G. Ivanov and S.M. El-Sayed, Properties of positive definite solution of the equation X + A*X-2A = I, Linear Algebra Appl, 279(1998) , 303-316．  I.G. Ivanov, V.I. Hasanov and B.V. Minchev, On matrix equation X ± A*X-2A-I, Linear Algebra Appl, 326(2001) , 27-44．  Yuhai Zhang, On Hermitian positive definite solutions of matrix equation X + A*X-2A = I, Linear Algebra Appl., 372(2003) , 295-304．  J.C. Engwerda, A.C.M. Ran, A.L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive deifnite solution of the matrix equation X + A*X-1A = Q, Linear Algebra Appl., 186(1993) , 255-275．  Rajendra Bhatia, Matrix Analysis, Springer-Verlag New York,INC., 1997．  G.W.Stewart and J.G.Sun, Matrix Perturbation Theory, Academic Press, 1990．  G.H.Golub and C.F.Van Loan, Matrix Computation, Johns Hopkins U.P., Baltimore, 1989．  Dajun Guo and V.Lakshmikantham, Nonlinear problems in abstract cones, Academic Press, INC., 1988．
 No related articles found!