• 论文 • 上一篇    下一篇

非奇异H矩阵的实用充分条件

干泰彬,黄廷祝   

  1. 电子科技大学应用数学学院,电子科技大学应用数学学院 成都, 610054 ,成都, 610054
  • 出版日期:2004-01-14 发布日期:2004-01-14

干泰彬,黄廷祝. 非奇异H矩阵的实用充分条件[J]. 计算数学, 2004, 26(1): 109-116.

PRACTICAL SUFFICIENT CONDITIONS FOR NONSINGULAR H-MATRICES

  1. Gan Taibin Huang Tingzhu (Faculty of Appl. Math., University of Electronic Science & Tech. of China, Chengdu, 610054)
  • Online:2004-01-14 Published:2004-01-14
1.引言 H矩阵是实际背景很广的一类矩阵,众所周知,包括数学物理问题在内的许多实际问题最后常归结为大型矩阵的线性代数方程组的求解,而在线性方程组的讨论中往往假设系数矩阵是非奇异H矩阵,同时它在控制论、电力系统理论、经济数学以及弹性力学等众多领域中都有广泛的应用,然而其实际判别却是困难的.所以如何实际判别一个矩阵是否为非奇异H矩阵显得很有意义.文[5]和[6]等给出了简单实用的判别条件,本文给出了几个新的有趣而实用的判别条件.
In this paper, several practical sufficient conditions for nonsingular H-matrices are obtained by comparing the elements of a matrix. Advantage of results obtained is illustrated by a numerical example.
()

[1] R. S. Varga, On recurring theorems on diagonal dominance, Lin. Alg. Appl., 13 (1976) , 1-9.
[2] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Press, Philadelphia, 1994.
[3] P. N. Shivakumar, K. H. Chew, A sufficient condition for nonvanishing of determinants, Pro.Amer. Math. Soc., 43 (1974) , 63-66.
[4] W. Li, On Nekrasov matrices, Lin. Alg. Appl, 281(1998) , 87-96.
[5] 黄廷祝,非奇异H矩阵的简捷判据,计算数学,3(1993) ,318-328.
[6] 逢明贤,广义对角占优阵的判定及其应用, 数学年刊,6A,3(1985) ,323-330
No related articles found!
阅读次数
全文


摘要