• 论文 • 上一篇    

非饱和水流问题的混合元法及其数值模拟

罗振东,谢正辉,朱江,曾庆存   

  1. 首都师范大学数学系,中国科学院大气物理所国际气候与环境科学研究中心,中国科学院大气物理所国际气候与环境科学研究中心,中国科学院大气物理所国际气候与环境科学研究中心 北京 100037 ,北京 100029 ,北京 100029 ,北京 100029
  • 出版日期:2003-01-14 发布日期:2003-01-14

罗振东,谢正辉,朱江,曾庆存. 非饱和水流问题的混合元法及其数值模拟[J]. 计算数学, 2003, 25(1): 113-128.

MIXED FINITE ELEMENT METHOD AND NUMERICAL SIMULATION FOR THE UNSATURATED SOIL WATER FLOW PROBLEM

  1. Luo Zhendong (Department of Mathematics, Capital Normal University, Beijing, 100037)Xie Zhenghui Zhu Jiang Zeng Qingcun (ICCES, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029)
  • Online:2003-01-14 Published:2003-01-14
1.引 言 均质土壤中的地下水流动可归结为非饱和土壤水的流动,是土壤水未完全充满孔隙时的流动,是多孔介质流体运动的一种重要形式.非饱和流动的预报在大气科学、土壤学、农业
In this paper, an unsaturated soil water flow equation is studied. The existence and uniqueness of its generalized solution and semi-discrete, fully discrete mixed finite element (MFE) solutions are proved, and the error estimates of the semi-discrete, fully discrete MFE solutions are analyzed. And finally, some numerical examples are given. By using the MFE method, the moisture content and flux can be simulated meanwhile; moreover, the computational accuracy for moisture flux is high and numerical model is stable.
()

[1] 叶笃正,曾庆存,郭裕福.当代气候研究.北京:气候出版社, 1991.
[2] Y.J.Dai, Q.C.Zeng, A land surface model (IAP94) for climate studies, Part I: formulation and validation in off-line experiments, Advances in Atmospheric Sciences, 14(1997) , 433-460.
[3] 谢正辉,曾庆存,戴永久等,非饱和流问题的数值模拟研究,中国科学(D辑),28(1998) ,175-180.
[4] 谢正辉,曾庆存,戴永久等,有限元方法在非饱和土壤水流问题中的应用,气候与环境研究,28(1998) :73-81.
[5] 雷志栋,杨诗秀,谢森传,土壤水动力学,北京:清华大学出版社, 1988.
[6] J.Bear, Dynamics of fluids in porous media, American Elsevier Publishing Company Inc.1972.
[7] M.A.Celia, E.T.Boulouton, R. L.Zarba, A general mass conservation numerical solutionfor the unsaturated flow equation, Water Resour. Res., 26(1990) , 1483-1496.
[8] R.A. Adams, Sobolev spaces, New York, Academic Press, 1975.
[9] V.Girault, P.A. Raviart, Finite element methods for Navier-Stokes equation, Theorem andAlgorithms, Springer-Verlag, 1986.
[10] V.Thomee, Galerkin finite element methods for parabolic problems, Lecture Notes in Math,1054, Spinger-Verlag, Berlin, New York, 1984.
[11] P.G.Ciarlet, The finite element methods for elliptic problems, North-Holland. 1978.
[12] 罗振东.有限元混合法理论基础及其应用-发展与应用.济南,山东教育出版社, 1996.
[13] R.E.Dickinson, A.Henderson-Sellers, P.J.Kennedy et al, Biosphere atmosphere transfer scheme (BATS) for NCAR community climate model, NCAR Technical Note, NCAR/TN 275+STR, 1986.
No related articles found!
阅读次数
全文


摘要