]*>","")" /> 一类双对称矩阵反问题的最小二乘解

• 论文 • 上一篇    下一篇

一类双对称矩阵反问题的最小二乘解

谢冬秀,张磊,胡锡炎   

  1. 湖南大学应用数学系!410082,湖南省计算所!410012,湖南大学应用数学系!410082
  • 出版日期:2000-01-14 发布日期:2000-01-14

谢冬秀,张磊,胡锡炎. 一类双对称矩阵反问题的最小二乘解[J]. 计算数学, 2000, 22(1): 29-40.

LEAST-SQUARE SOLUTIONS OF INVERSE PROBLEMS FOR BISYMMETRIC MATRICES

  1. Xie Dongxiu (Dept. of Appl. Math, Hunan University, Changsha, 410082) Zhang Lei (Hunan Computing Center, Changsha, 410012) Hu Xiyan (Dept. of Appl. Math, Hunan University, Changsha, 410082)
  • Online:2000-01-14 Published:2000-01-14
A=(a_ij) ∈R~(n×n ) is termed bisymmetric matrix if We denote the set of all n × n bisymmetric matrices by BSR~(n×n ) In this paper, we discuss the following two problems: Problem I. Given X, Find such that Problem Ⅱ. Gived . Find such that where ||·|| is Frobenius norm, and S_E is the solution set of Problem I. The general form of S_E has been given. The necessary and sufficient conditions have been studied for the special cases AX = B and AX = XA of problem I. For problem Ⅱ the expression of the solution has been provided.
()

[1]周树荃,戴华,代数特征值反问题,河南科学技术出版设,1991.(Zhou Shuquan, Dai Hua, Inverse Problem of Algebra Eigenvalue, Henan Science andTechnology Press, 1991.)
[2] G. H. Golub and C. F. Van Loan, Mattix Computations, john Hopkins U.P., Baltimore,1989.
[3]张磊,一类对称矩阵的逆特征值问题,高校计算数学学报.12:1(1990),65-71.(Zhang Let, A class of inverse eigenvalue problems of symmetric matrices, Numer. Math.J. Chinese Univ., 12: 1 (1990), 65-71.)
[4]孙继广,实对称矩阵的两类逆特征值问题,计算数学,3(1988),282-290.(Sun Jiguang, Two kinds of inverse eigenvalue problems for real symmetric matrices, Math.Numer. Sinica, 3 (1988), 282-290.)
[5]孙继广,一类反特征值问题的最小二乘解,计算数学,2(1987),206-216.(Sun Jiguang, Least-squares solutions of a class of inverse eigenvalue problem, Math. Numer. Sinica, 2(1987), 206-216.)
[6]何旭初,孙文瑜,广义过矩阵引论,江苏出版社, 1991.(X.C. He, Y.W. Sun, Introduction to Generalized,Inverse of Matrices, Jiangsu Science andTechnology Press, 1991.)
[7]胡锡炎,张磊,谢冬秀双对称矩阵过特征值问题解存在的条件,计算数学,20:4(1998),409-418. (Hu Xiyan, Zhang Lei, Xie Dongxiu, The solvability conditions for the inverse eigenvalueproblem of bisymmetric matrices, Math. Numer. Sinica, 20: 4(1998), 409-418.)
No related articles found!
阅读次数
全文


摘要