]*>","")" /> 一类非线性反应扩散方程组的有限元分析

• 论文 • 上一篇    下一篇

一类非线性反应扩散方程组的有限元分析

江成顺,崔霞   

  1. 信息工程大学应用数学系!郑州,450002,北京应用物理与计算数学研究所!北京,100088
  • 出版日期:2000-01-14 发布日期:2000-01-14

江成顺,崔霞. 一类非线性反应扩散方程组的有限元分析[J]. 计算数学, 2000, 22(1): 103-112.

FINITE ELEMENT ANALYSIS FOR SOME NONLINEAR REACTION - DIFFUSION SYSTEMS

  1. Jiang Chengshun (Dept. of Appl. Math., Univ. of Information Engineering Zhengzhou, 450002) Cul Xia (Institute of Appl.. Phy. and Comp. Math., Beijing, 100088)
  • Online:2000-01-14 Published:2000-01-14
This paper is concerned with the finite element scheme and the alternating direction finite element scheme for some nonlinear reaction - diffusion systems with the second or the third boundary value conditions. Not only the existence and uniqueness of solutions for these approximational schemes are obtained, but also the optimal H~(1) - norm and L~(2)- norm error estimate results are demonstrated.
()

[1] H. E. Kobus and W. Kinzelbach, Contaminant Transport in Groundwater, Balkema, Rotterdam Netherlands, 1989
[2] C. V. Pao, Asymptotic Behaviour of a Reaction - Diffusion System in Bacteriology, J.Math. Anal. Appl., 1985, 108: 1-14
[3] C. S. Jiang, M. X. Wang and C. H. Xie, Asymptotic Behaviour of Global Solutions for aChemical Reaction Model, J. Math. Anal. Appl., 1998, 220: 64O-656
[4] G. F. Webb, A Reaction - Diffusion Model for a Deterministic Diffusive Epidemic, J. Math.Anal. Appl., 1984, 84; 150-161
[5] R. A. Adams, Sobolev Space, 1975, Academic Press, New York
[6] M. F. Wheeler, A Priori L~(2)-Error Estimates for Galerkin Approximations to ParabolicPartial Differential Equations, SIAM J. Numer. Anal., 1973, 10(4): 723-759
[7] J. E. Dendy, An Analysis of Some Galerkin Schemes for the solution of Nonlinear Time Dependent Problems, SIAM J. Numer. Anal. 1975, 12(4):
[8] J. H. Linda, A Modified Backwad Time Discretization for Nonlinear Parabolic EquationsUsing Pacth Approximations, SUM J. Numer. Anal., 1981, 18(5): 781-793
No related articles found!
阅读次数
全文


摘要