• 论文 •

### 关于Wilson矩形元L~∞-估计的一个注记

1. 中国科学院计算中心
• 出版日期:1993-04-14 发布日期:1993-04-14

### A NOTE ON L~∞-ESTIMATE FOR THE WILSON RECTANGULAR ELEMENT

1. Leng Xiang Computing Center, Academia Sinica
• Online:1993-04-14 Published:1993-04-14

1.引言与预备知识 为方便起见,我们仅考虑如下的模型问题: -△u=f,在Ω中,u|Ω=0, (1.1)其中Ω R~2是边平行坐标轴的矩形域。 W~(m,p)(Ω),W_0~(m,p)(Ω)(m为整数,1≤p≤∞)表示通常定义的Sobolev空间,||·||_(m,p,Ω),|·|_(m,p,Ω)为通常定义的范数和半范数,定义W~(m,2)(Ω):=H~m(Ω),W_0~(m,2)(Ω):=H_0~m(Ω)。

In this paper, we prove that if the smoothness of the. solution of.a 2-order elliptic problem is raised, then the Lnh factor in pointwise error estimate of Wilson's rectangular element can be eliminated.

()
 [1] P.G.Ciarlet, The finite element methods for elliptic problems, North-Holland, Amsterdam, 1978． [2] P.Lesaint, On the convergence of Wilson nonconforming element for solving the elastic problems,Comp. Meths. Appl. Mech. Eng., 7 (1976) , 1-16． [3] P.Lesaint, M.Zlamal, Convergence of the nonconforming Wilson element for arbitrary quadrilateral meshes, Numer. Math., 36 (1980) , 33-52． [4] Q. Lin, Finite element error explansion for nonuniform quadrilateral meshes, Sym. Sci. Math.Sci., 2 (1989) , 275-282． [5] 李波,Wilson元的收敛性分析,中国第一届偏微数值解会议论文,1987． [6] 沈树民,非协调有限元解的L_∞估计,计算数学,8(1986) ,225-230． [7] 石钟慈,关于Wilson元的最佳收敛阶,计算数学,8(1986) ,159-163． [8] 朱启定,林群,有限元超收敛理论,湖南科学技术出版社,1989．
 No related articles found!