• 论文 • 上一篇    下一篇

试验函数不满足边界条件的一种有限元法

周天孝,   

  • 出版日期:1980-01-14 发布日期:1980-01-14

周天孝,. 试验函数不满足边界条件的一种有限元法[J]. 计算数学, 1980, 2(1): 50-62.

THE FINITE ELEMENT METHODS WITH TRIAL FUNCTIONS NOT FULFILLING ESSENTIAL BOUNDARY CONDITIONS

  1. Zhou Tien-hsiao
  • Online:1980-01-14 Published:1980-01-14
对于第一边界值问题,发展了一种使试验函数不必满足边界条件的有限元法,指出了此种新的处理具有通常有限元法应该有的稳定性与最佳收敛性特征。
We consider the finite element methods with trial functions not fulfilling essential boundary conditions. the variational formulation of“Saddle-point”type is applied. The convergent error estimates of optimal order of ccuracy are derived. The resulting schemes have same numerical stability as R tz finite element methods.
()

[1] I. Babuska, The finite element method with penalty. Math. Comp., 27(1973) , 221-228.
[2] J. Blair. Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed, SIAM J. Appl. Math., 24(1973) 277-285.
[3] J.H. Bramble, A Survey of some finite element methods proposed for treating the Dirichlet problem, Advances in Math., 16(1975) , 187-196.
[4] 周天孝,一类交感有限元法分析,航空学报,No.1,1978,44-59.
[5] 周天孝,关于分片多项式插值逼近的注记,计算数学,1:2(1979) ,172-178.
[6] J.T. King, New error bounds for the penalty method and extrapolation, Numer. Math., 23(1974) 153-165.
[7] J. Nitsche, Uber ein variations aprinzip zur Losung von Diriehlet-problemen bei Verwendung Von Teilraumen, die keinen Randbedingungen umer unterworfen Sind, Abh, Math. Sem. Univ.Hamburg, 36(1970-71) , 9-15.
[8] J. NitschEe, On Dirichlet problems using subspaces with nearly zero boundary conditions, the Mathematical foundations of the F.E.M with applications to P.D.E. edited by A. K, Aziz Academic Press, New York, & London, 1972, 603-627.
[9] G. Strang, A. Berger, The change in solution due to change in domain, Proc. Sympos. Pure.Math. Vol. 23, Amer. Math. Soc., 1973, 189-205.
[10] F. Brezzi, Sur la methode des elements finis hybrides pour le problemc biharmorique, Numer.Math.,24(1975) . 103-131.
No related articles found!
阅读次数
全文


摘要