Previous Articles    

THE ULTRACONVERGENCE OF EIGENVALUES FORBI-QUADRATIC FINITE ELEMENTS

Lingxiong Meng, Zhimin Zhang   

  1. 1. Key Laboratory of High Performance Computing and Stochastic Information Processing (HPCSIP)(Ministry of Education of China), College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China;
    2. Department of Mathematics, Wayne State University, Detroit, MI 48202, USA and Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2011-12-14 Revised:2012-03-06 Online:2012-09-15 Published:2012-09-24
  • Supported by:

    The work of the rst author was supported by the National NaturalScience Foundation of China (10671078) and the China Scholarship Council (CSC) as a visitingscholar in Wayne State University. The research of the second author was supported in part bythe US National Science Foundation through grant DMS-1115530, the Ministry of Education of China through the Changjiang Scholars program, the Guangdong Provincial Government of China through the \Computational Science Innovative Research Team program, and Guang-dong Province Key Laboratory of Computational Science at the Sun Yat-sen University.

Lingxiong Meng, Zhimin Zhang. THE ULTRACONVERGENCE OF EIGENVALUES FORBI-QUADRATIC FINITE ELEMENTS[J]. Journal of Computational Mathematics, 2012, 30(5): 555-564.

The classical eigenvalue problem of the second-order elliptic operator is approximatedwith bi-quadratic nite element in this paper. We construct a new superconvergent functionrecovery operator, from which the O(h8|lnh|2) ultraconvergence of eigenvalue approxima-tion is obtained. Numerical experiments verify the theoretical results.

CLC Number: 

[1] M. Ainsworth J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley Inter-science, New York, 2000.



[2] I. Babuska and J.E. Osborn, Eigenvalue problems, in: Handbook of Numerical Analysis Vol.II,Finite Element Methods (Part I), P.G. Ciarlet and J.L. Lions, eds, Elsevier, 1991, 641-792.



[3] I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, Oxford UniversityPress, London, 2001.



[4] R.E. Bank, and J. Xu, Asymptotically exact a posteriori error estimators, Part I: Grid withsuperconvergence, SIAM J. Numer. Anal., 41 (2003), 2294-2312.



[5] J.H. Bramble and J. Xu, A local post-processing technique for improving the accuracy in mixedfinite element approximations, SIAM J. Numer. Anal., 26 (1989), 1267-1275.



[6] S. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition,Springer-Verlag, New York, 2008.



[7] C. Carstensen, A unifying theory of a posteriori finite element error control, Numer. Math., 1000(2005), 617-637.



[8] A. Hannukainen, S. Korotov and M. Krizek, Nodal O(h4)-Superconvergence in 3D by AveragingPiecewise Linear, Bilinear, and Trilinear FE Approximation, J. Comp. Math., 28, (2010), 1-10.



[9] K. Kolman, A two-level method for nonsymmetric eigenvalue problems, Acta Math. Appl. Sin.Engl. Ser., 21:1, (2005), 1-12.



[10] J.R. Kuttler and V.G. Sigillito, Eigenvalues of the Laplacian in two dimensions, SIAM Review,26:2 (1984), 163-193



[11] M.P. Lebaud, Error Estimate in an isoparametric jinite ylement yigenvalue problem, Math. Comp.,63:207 (1994), 19-40.



[12] X.D. Li and N.-E. Wiberg, A posteriori error estimate by element patch postprocessing, adaptiveanalysis in energy and L2 norms, Comp. Struct., 53 (1994), 907-919.



[13] Q. Lin and Y.D. Yang, Interpolation and correction of finite elements. Math Prac Theory, 3 (1991),17-28, (in Chinese).



[14] L.X. Meng and Q.D. Zhu, The ultraconvergence of derivative for bicubic finite element, Comput.Methods Appl. Mech. Engrg., 196 (2007), 3771-3778.



[15] A. Naga and Z. Zhang, A posteriori error estimates based on polynomial preserving recovery,SIAM J. Numer. Anal., 9 (2004), 1780-1800.



[16] A. Naga and Z. Zhang, The polynomial-preserving recovery for higher order finite element methodsin 2D and 3D, Discrete and Continuous Dynamical Systems Series B, 5 (2005), 769-708.



[17] A. Naga, Z. Zhang, and A. Zhou, Enhancing eigenvalue approximation by gradient recovery, SIAMJ. Sci. Comput., 28 (2006), 1289-1300.



[18] A. Naga and Z. Zhang, Function value recovery and its application in linear finite elements, SIAMJ. Numer. Anal., 50:1, (2012), 272-286.



[19] J.S. Ovall, Function, Gradient and Hessian recovery using quadratic edge-bump functions, SIAMJ. Numer. Anal., 5 (2007), 1064-1080.



[20] L. Shen and A. Zhou, A defect correction scheme for finite element eigenvalues with applicationsto quantum chemistry, SIAM J. Sci. Comput., 28:1 (2006), 321-3-38. (electronic).



[21] L.R. Wahlbin, Superconvergence in Galerkin Finite Element Methods, Lecture Notes in Mathe-matics, Vol. 1605, Springer, Berlin, 1995.



[22] J. Wang, A superconvergence analysis for finite element solutions by the least-squares surface tingon irregular meshes for smooth problems, J. Math. Study, 33 (2000), 229-243.



[23] N. E. Wiberg and X.D. Li, Superconvergent patch recovery of ite element solution and a posteriorierror L2 norm estimate, Comm. Numer. Methods Engrg., 10 (1994), 313-320.



[24] H. Wu and Z. Zhang, Can we have superconvergent gradient recovery under adaptive meshes? SIAM J. Numer. Anal., 45-4 (2007), 1701-1722.



[25] J. Xu and Z. Zhang, Analysis of recovery type a posteriori error estimators for mildly structuredgrids, Math. Comp., 73 (2004), 1139-1152.



[26] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70(2001), 17-25.



[27] J. Xu and A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, ActaMath. Appl. Sin. Engl. Ser., 18:2 (2002), 185-200.



[28] Z. Zhang and R.C. Lin, Ultraconvergence of ZZ patch recovery at mesh symmetry points, Numer.Math., 95 (2003), 781-801.



[29] Z. Zhang and A. Naga, A new finite element gradient recovery method: superconvergence property,SIAM J. Sci. Comput., 26 (2005), 1192-1213.



[30] Q.D. Zhu, Higher Accuracy Post-processing Theory for Finite Element Methods (In Chinese).Science Publisher, Beijing, 2008.



[31] Q.D. Zhu and Q. Lin, The Superconvergence Theory of the Finite Element Methods (In Chinese),Hunan Science Publisher, Changsha, 1989.



[32] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practicalengineering analysis, Internat. J. Numer. Methods Engrg., 24 (1987), 337-357.



[33] O.C. Zienkiewicz and J.Z. Zhu, The superconvergence patch recovery and a posteriori error esti-mates, part I: the recovery technique, Internat. J. Numer. Methods Engrg., 33 (1992), 1331-1364.
[1] Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623.
[2] Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565-579.
[3] Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
[4] Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468.
[5] Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486.
[6] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[7] Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142-175.
[8] Yu Du, Haijun Wu, Zhimin Zhang. SUPERCONVERGENCE ANALYSIS OF THE POLYNOMIAL PRESERVING RECOVERY FOR ELLIPTIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 223-238.
[9] Weijie Huang, Zhiping Li. A MIXED FINITE ELEMENT METHOD FOR MULTI-CAVITY COMPUTATION IN INCOMPRESSIBLE NONLINEAR ELASTICITY [J]. Journal of Computational Mathematics, 2019, 37(5): 609-628.
[10] Li Guo, Hengguang Li, Yang Yang. INTERIOR ESTIMATES OF SEMIDISCRETE FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS WITH DISTRIBUTIONAL DATA [J]. Journal of Computational Mathematics, 2019, 37(4): 458-474.
[11] Weimin Han, Ziping Huang, Cheng Wang, Wei Xu. NUMERICAL ANALYSIS OF ELLIPTIC HEMIVARIATIONAL INEQUALITIES FOR SEMIPERMEABLE MEDIA [J]. Journal of Computational Mathematics, 2019, 37(4): 506-523.
[12] Ying Yang, Benzhuo Lu, Yan Xie. A DECOUPLING TWO-GRID METHOD FOR THE STEADY-STATE POISSON-NERNST-PLANCK EQUATIONS [J]. Journal of Computational Mathematics, 2019, 37(4): 556-578.
[13] Fei Xu, Fusheng Luo. A CASCADIC MULTIGRID METHOD FOR SEMILINEAR ELLIPTIC EQUATIONS [J]. Journal of Computational Mathematics, 2019, 37(1): 112-129.
[14] Kaifang Liu, Lunji Song, Shuangfeng Zhou. AN OVER-PENALIZED WEAK GALERKIN METHOD FOR SECOND-ORDER ELLIPTIC PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(6): 866-880.
[15] Fei Wang, Shuo Zhang. OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION [J]. Journal of Computational Mathematics, 2018, 36(5): 693-717.
Viewed
Full text


Abstract