Previous Articles    

CONVERGENCE ANALYSIS ON SS-HOPM FOR BEC-LIKE NONLINEAR EIGENVALUE PROBLEMS

Yaozong Tang1,2, Qingzhi Yang1,2, Gang Luo1   

  1. 1 School of Mathematical Sciences, LPMC, Nankai University, Tianjin 300071, China;
    2 School of Mathematics and Statistics, Kashi University, Kashi 844006, China
  • Received:2019-12-18 Revised:2020-03-16 Published:2021-08-06
  • Contact: Qingzhi Yang,Email:qz-yang@nankai.edu.cn
  • Supported by:
    We are grateful to the referees for their insightful comments and suggestions. This work is supported by Natural Science Foundation of XinJiang (Grant No. 2018D01A01).

Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SS-HOPM FOR BEC-LIKE NONLINEAR EIGENVALUE PROBLEMS[J]. Journal of Computational Mathematics, 2021, 39(4): 621-632.

Shifted symmetric higher-order power method (SS-HOPM) has been proved effective in solving the nonlinear eigenvalue problem oriented from the Bose-Einstein Condensation (BEC-like NEP for short) both theoretically and numerically. However, the convergence of the sequence generated by SS-HOPM is based on the assumption that the real eigenpairs of BEC-like NEP are finite. In this paper, we will establish the point-wise convergence via Lojasiewicz inequality by introducing a new related sequence.

CLC Number: 

[1] W.Z. Bao and Y.Y. Cai, Mathematical theory and numerical methods for Bose-Einstein condensation,Kinet. Relat. Mod., 6(2013), 1-135.
[2] W.Z. Bao, I.-L. Chern and Y.Z. Zhang, Efficient numerical methods for computing ground states of spin-1 Bose-Einstein coandensates based on their characterizations, J. Comput. Phys., 253(2013), 189-208.
[3] X. Antoine and R. Duboscq, Modeling and computation of Bose-Einstein condensates: stationary states, nucleation, dynamics, stochasticity, Lecture Notes in Mathematics, Springer-verlag, 2015.
[4] S.H. Jia, H.H. Xie, M.T. Xie and F. Xu, A full multigrid method for nonlinear eigenvalue problems. Sci. China Math., 59:10(2016), 2037-2048.
[5] E. Cancés, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue problems, J. Sci. Comput., 45(2010), 90-117.
[6] H.H. Xie, A multigrid method for nonlinear eigenvalue problems (in Chinese), Sci. China Math., 45(2015), 1193-1204.
[7] X.M. Wu, Z.W. Wen and W.Z. Bao, A regularized Newton method for computing ground states of Bose-Einstein condensates, J. Sci. Comput., 73:1(2017), 303-329.
[8] D. I and K. P, A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy withrotation, SIAM J. Sci. Comput., 32(2010), 2447-2467.
[9] J. Hu, B. Jiang, X. Liu and Z.W. Wen, A note on semidefinite programming relaxations for polynomial optimization over a single sphere. Sci. China Math., 59:8(2016), 1543-1560.
[10] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 2006.
[11] S. K.Adhikari, Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms, Phys. Lett. A, 265:1-2(2000), 91-96.
[12] M. Edwards and K. Burnett, Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Lett. A, 51:2(1995), 1382-1386.
[13] Q.Z. Yang, P.F. Huang and Y.J. Liu, Numerical examples for solving a class of nonlinear eigenvalue problems (in Chinese), J. Numer. Methods Comput. Appl., 2(2019), 130-142.
[14] Y.Z. Tang, Q.Z. Yang and P.F. Huang, SS-HOPM for BEC-like nonlinear eigenvalue problems, Numerical Mathematics: A Journal of Chinese Universities, 42:2(2020), 163-192.
[15] S. Lojasiewicz, Ensembles Semi-Analytiques, Lectures Notes IHES (Bures-sur-Yvette), 1965.
[16] H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116:1-2(2009), 5-16.
[17] H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-L ojasiewicz inequality, Math. Oper. Res., 35:2(2010), 438-457.
[18] H. Attouch, J. Bolte and B. F. Svaiter, Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods, Math. Program., 137:1-2 Ser. A (2013), 91-129.
[19] R. Schneider and A. Uschmajew, Convergence results for projected line-search methods on varieties of low-rank matrices via Lojasiewicz inequality. SIAM J. Optmiz., 25:1(2015), 622-646.
[20] A. Uschmajew, A new convergence proof for the higher-order power method and generalizations, Pac. J. Optim., 11(EPFL-ARTICLE-212438) (2015), 309-321.
[21] P.-A. Absil, R. Manhony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optimiz., 16:2(2005), 531-547.
[22] G. Luo and Q.Z. Yang, The point-wise convergence of shifted symmetric high order power method, J. Ind. Mang. Optim., 2019.doi:10.3934/jimo.2019115.
[23] T. G. Kolda, B. W. Bader and J. P. Kenny, Higher-Order Web Link Analysis Using Multilinear Algebra, Proceedings of the 5th IEEE International Conference on Data Mining, Houston, TX., 2005, pp. 242-249.
[24] P. Comon, G. Golub, L.-H. Lim and B. Mourrain, Symmetric tensors and symmetric tensor rank, SCCM Technical Report 06-02, Stanford University, 2006.
[25] L.Q. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput., 40(2005), 1302-1324.
[26] T. G. Kolda and J. R. Mayo, Shifted power method for computing tensor eigenpairs, SIAM J. Matrix. Anal. Appl., 32:4(2011), 1095-1124.
[27] L.-H. Lim, Singular values and eigenvalues of tensors: A variational approach, CAMSAP05: Proceeding of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005, 129-132.
[28] E. Kofidis and P. A. Regalia, On the best rank-1 approximation of higher-order supersymmetric tensors, SIAM J. Matrix. Anal. Appl., 23(2002), 863-884.
[29] S.L. Hu and G.Y. Li, Convergence rate analysis for the higher order power method in best rank one approximations of tensors, Numer. Math., 140:4(2018), 993-1031.
[1] Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374.
[2] Hong Wang, Xin Liu, Xiaojun Chen, Yaxiang Yuan. SNIG PROPERTY OF MATRIX LOW-RANK FACTORIZATION MODEL [J]. Journal of Computational Mathematics, 2018, 36(3): 374-390.
[3] Liping Zhang, Liqun Qi, Yi Xu. LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS [J]. Journal of Computational Mathematics, 2012, 30(1): 24-33.
[4] Hua Dai, Zhong-Zhi Bai. ON EIGENVALUE BOUNDS AND ITERATION METHODS FOR DISCRETE ALGEBRAIC RICCATI EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(3): 341-366.
[5] Hua Dai, Zhong-Zhi Bai. ON SMOOTH LU DECOMPOSITIONS WITH APPLICATIONS TO SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(6): 745-766.
Viewed
Full text


Abstract