Xiaobing Feng^{1}, Yukun Li^{2}, Yi Zhang^{3}
Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE[J]. Journal of Computational Mathematics, 2021, 39(4): 574598.
[1] R. Bank and H. Yserentant, On the H^{1}stability of the L^{2}projection onto finite element spaces, Numer. Math., 126(2014), 361381. [2] M. Beccari, M. Hutzenthaler, A. Jentzen, R. Kurniawan, F. Lindner and D. Salimova, Strong and weak divergence of exponential and linearimplicit Euler approximations for stochastic partial differential equations with superlinearly growing nonlinearities, 2019. [3] S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008. [4] J. Brandts, A. Hannukainen, S. Korotov and M. Křȋžek, On angle conditions in the finite element method, SeMA Journal, 56(2011), 8195. [5] CE Bréhier, and L. Goudenège, Analysis of some splitting schemes for the stochastic AllenCahn equation, Discrete Contin. Dyn. Syst. Ser. B, 24(2019), 41694190. [6] K. Burrage and J. Butcher, Stability criteria for implicit RungeKutta methods, SIAM J. Numer. Anal., 16(1979), 4657. [7] J. Butcher, A stability property of implicit RungeKutta methods, BIT, 15(1975), 358361. [8] P. Ciarlet, The finite element method for elliptic problems, Classics in Appl. Math., 40(2002), 1511. [9] X. Feng and Y. Li, Analysis of symmetric interior penalty discontinuous Galerkin methods for the AllenCahn equation and the mean curvature flow, IMA J. Numer. Anal., 35(2015), 16221651. [10] X. Feng, Y. Li and A. Prohl, Finite element approximations of the stochastic mean curvature flow of planar curves of graphs, Stoch. PDEs: Analysis and Computations, 2(2014), 5483. [11] X. Feng, Y. Li and Y. Zhang, Finite element methods for the stochastic AllenCahn equation with gradienttype multiplicative noise, SIAM J. Numer. Anal., 55(2017), 194216. [12] X. Feng and A. Prohl, Numerical analysis of the AllenCahn equation and approximation for mean curvature flows, Numer. Math., 94(2003), 3365. [13] G. Dahlquist, Error analysis for a class of methods for stiff nonlinear initial value problems, SIAM J. Numer. Anal. (1976), 6072. [14] K. Dekker, Stability of RungeKutta methods for stiff nonlinear differential equations, CWI Monographs, 2(1984). [15] B. Gess, Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal., 263(2012), 23552383. [16] I. Gyöngy and A. Millet, On discretization schemes for stochastic evolution equations, Potential analysis, 23(2005), 99134. [17] I. Gyöngy, S. Sabanis and D. Šiška, Convergence of tamed Euler schemes for a class of stochastic evolution equations, Stochastics and Partial Differential Equations: Analysis and Computations, 4(2016), 225245. [18] D. Higham, X. Mao and A. Stuart, Strong convergence of Eulertype methods for nonlinear stochastic differential equations, SIAM J. Numer. Anal., 40(2002), 10411063. [19] M. Hutzenthaler, A. Jentzen and P. Kloeden, Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with nonglobally Lipschitz continuous coefficients, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2010), 15631576. [20] M. Hutzenthaler, A. Jentzen and P. Kloeden, Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations, Ann. Appl. Probab., 23:5(2013), 1913 1966. [21] K. Itô, 109. stochastic integral, Proceedings of the Imperial Academy, 20(1944), 519524. [22] A. Jentzen and P. Pušnik, Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with nonglobally Lipschitz continuous nonlinearities, IMA J. Numer. Anal., (2020), 138. [23] M. Kovács, S. Larsson and F. Lindgren, On the backward Euler approximation of the stochastic AllenCahn equation, J. Appl. Probab., 52(2015), 323338. [24] M. Kovács, S. Larsson and F. Lindgren, On the discretisation in time of the stochastic AllenCahn equation, Mathematische Nachrichten, 291(2018), 966995. [25] M. Krızek and Q. Lin, On diagonal dominance of stiffness matrices in 3D, EastWest J. Numer. Math, 3(1995), 5969. [26] Y. Li, Numerical Methods for Deterministic and Stochastic Phase Field Models of Phase Transition and Related Geometric Flows, Ph.D. thesis, The University of Tennessee, Knoxville, 2015. [27] Z. Liu and Z. Qiao, Strong approximation of monotone stochastic partial differential equations driven by white noise, IMA J. Numer. Anal., 2019. [28] A. Majee and A. Prohl, Optimal Strong rates of convergence for a spacetime discretization of the stochastic AllenCahn equation with multiplicative noise, Comput. Methods Appl. Math., 18(2018), 297311. [29] X. Mao, Stochastic differential equations and applications, 2nd Edition, Elsevier, 2007. [30] P. Kloeden and E. Platen, Numerical Methods for Stochastic Differential Equations, Springer, 1991. [31] G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, 1992. [32] A. Majee and A. Prohl, A. Prohl, Strong rates of convergence for a spacetime discretization of the stochastic AllenCahn equation with multiplicative noise, Comput. Methods Appl. Math., (2018), 297311. [33] A. Stuart and A. Humphries, Dynamical Systems and Numerical Analysis, Cambridge University Press, 1998. [34] J. Xu, Y. Li, S. Wu and A. Bousquet, On the stability and accuracy of partially and fully implicit schemes for phase field modeling, Comput. Methods in Appl. Mech. Eng., 345(2019), 826853. [35] J. Xu and L. Zikatanov, A monotone finite element scheme for convectiondiffusion equations, Math. Comp., 68(1999), 14291446. 
[1]  Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130146. 
[2]  Tingting Qin, Chengjian Zhang. A GENERAL CLASS OF ONESTEP APPROXIMATION FOR INDEX1 STOCHASTIC DELAYDIFFERENTIALALGEBRAIC EQUATIONS [J]. Journal of Computational Mathematics, 2019, 37(2): 151169. 
[3]  CharlesEdouard Bréhier, Martin Hairer, Andrew M. Stuart. WEAK ERROR ESTIMATES FOR TRAJECTORIES OF SPDEs UNDER SPECTRAL GALERKIN DISCRETIZATION [J]. Journal of Computational Mathematics, 2018, 36(2): 159182. 
[4]  Christoph Reisinger, Zhenru Wang. ANALYSIS OF MULTIINDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE [J]. Journal of Computational Mathematics, 2018, 36(2): 202236. 
[5]  Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE [J]. Journal of Computational Mathematics, 2018, 36(2): 276309. 
[6]  Xiaocui Li, Xiaoyuan Yang. ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(3): 346362. 
[7]  Xiaoyuan Yang, Xiaocui Li, Ruisheng Qi, Yinghan Zhang. FULLDISCRETE FINITE ELEMENT METHOD FOR STOCHASTIC HYPERBOLIC EQUATION [J]. Journal of Computational Mathematics, 2015, 33(5): 533556. 
Viewed  
Full text 


Abstract 

