Previous Articles    

CHARACTERISATION OF RATIONAL AND NURBS DEVELOPABLE SURFACES IN COMPUTER AIDED DESIGN

Leonardo Fernández-Jambrina   

  1. ETSI Navales, Universidad Politécnica de Madrid, 28040-Madrid, Spain
  • Received:2019-10-14 Revised:2020-01-19 Published:2021-08-06
  • Contact: Leonardo Fernández-Jambrina,Email:leonardo.fernandez@upm.es
  • Supported by:
    This work is partially supported by the Spanish Ministerio de Economía y Competitividad through research grant TRA2015-67788-P.

Leonardo Fernández-Jambrina. CHARACTERISATION OF RATIONAL AND NURBS DEVELOPABLE SURFACES IN COMPUTER AIDED DESIGN[J]. Journal of Computational Mathematics, 2021, 39(4): 556-573.

In this paper we provide a characterisation of rational developable surfaces in terms of the blossoms of the bounding curves and three rational functions Λ, M, ν. Properties of developable surfaces are revised in this framework. In particular, a closed algebraic formula for the edge of regression of the surface is obtained in terms of the functions Λ, M, ν, which are closely related to the ones that appear in the standard decomposition of the derivative of the parametrisation of one of the bounding curves in terms of the director vector of the rulings and its derivative. It is also shown that all rational developable surfaces can be described as the set of developable surfaces which can be constructed with a constant Λ, M, ν . The results are readily extended to rational spline developable surfaces.

CLC Number: 

[1] M. Perriollat and A. Bartoli, A computational model of bounded developable surfaces with application to image-based three-dimensional reconstruction, Computer Animation & Virtual Worlds, 24:5(2013), 459-476. doi:10.1002/cav.1478.
[2] H. Pottmann, A. Asperl, M. Hofer and A. Kilian, Architectural geometry, Bentley Institute Press, Exton, 2007.
[3] K. Rose, A. Sheffer, J. Wither, M.-P. Cani and B. Thibert, Developable surfaces from arbitrary sketched boundaries, in: A. Belyaev, M. Garland (Eds.), Eurographics Symposium on Geometry Processing (2007), The Eurographics Association, 2007, 163-172.
[4] U. Kilgore, Developable hull surfaces, in: Fishing Boats of the World, Vol. 3, Fishing News Books Ltd., Surrey, 1967, 425-431.
[5] J.S. Chalfant and T. Maekawa, Design for manufacturing using B-spline developable surfaces., J. Ship Research, 42:3(1998), 207-215.
[6] F. Pérez and J. Suárez, Quasi-developable B-spline surfaces in ship hull design, Comput. Aided Design, 39:10(2007), 853-862. doi:10.1016/j.cad.2007.04.004.
[7] W.H. Frey and D. Bindschadler, Computer aided design of a class of developable Bézier surfaces, Tech. rep., GM Research Publication R&D-8057(1993).
[8] H. Pottmann and J. Wallner, Computational line geometry, Mathematics and Visualization, Springer-Verlag, Berlin, 2001.
[9] J. Lang and O. Röschel, Developable (1, n)-Bézier surfaces, Comput. Aided Geom. Design, 9:4(1992), 291-298. doi:10.1016/0167-8396(92)90036-O.
[10] G. Aumann, Interpolation with developable Bézier patches, Comput. Aided Geom. Design, 8:5(1991), 409-420.
[11] T. Maekawa, Design and tessellation of B-spline developable surfaces, ASME Transactions Journal of Mechanical Design, 120(1998), 453-461.
[12] R.M.C. Bodduluri and B. Ravani, Design of developable surfaces using duality between plane and point geometries., Comput. Aided Design, 25:10(1993), 621-632.
[13] H. Pottmann and G. Farin, Developable rational Bézier and B-spline surfaces, Comput. Aided Geom. Design, 12:5(1995), 513-531.
[14] H. Pottmann and J. Wallner, Approximation algorithms for developable surfaces, Comput. Aided Geom. Design, 16:6(1999), 539-556.
[15] C. Tang, P. Bo, J. Wallner and H. Pottmann, Interactive design of developable surfaces, ACM Trans. Graph., 35:2(2016), 12:1-12:12.
[16] C.H. Chu and C.H. Séquin, Developable Bézier patches: properties and design, Comput. Aided Design, 34:7(2002), 511-527.
[17] G. Aumann, A simple algorithm for designing developable Bézier surfaces, Comput. Aided Geom. Design, 20:8-9(2003), 601-619, in memory of Professor J. Hoschek.
[18] G. Aumann, Degree elevation and developable Bézier surfaces, Comput. Aided Geom. Design, 21:7(2004), 661-670.
[19] L. Fernández-Jambrina, Bézier developable surfaces, Comput. Aided Geom. Design, 55(2017), 15-28. doi:10.1016/j.cagd.2017.02.001.
[20] L. Fernández-Jambrina, B-spline control nets for developable surfaces, Comput. Aided Geom. Design, 24:4(2007), 189-199. doi:10.1016/j.cagd.2007.03.001.
[21] A. Cantón, Fernández-Jambrina, Interpolation of a spline developable surface between a curve and two rulings, Frontiers of Information Technology & Electronic Engineering, 16(2015), 173-190.
[22] A. Cantón and L. Fernández-Jambrina, Non-degenerate developable triangular Bézier patches, in: J.-D. Boissonnat, P. Chenin, A. Cohen, C. Gout, T. Lyche, M.-L. Mazure, L. Schumaker (Eds.), Curves and Surfaces, Vol. 6920 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2012, 207-219.
[23] S. Leopoldseder, Algorithms on cone spline surfaces and spatial osculating arc splines, Comput. Aided Geom. Des., 18:6(2001), 505-530.
[24] M. Rabinovich, T. Hoffmann and O. Sorkine-Hornung, Discrete geodesic nets for modeling developable surfaces, ACM Trans. Graph., 37:2(2018), 16:1-16:17.
[25] O. Stein, E. Grinspun and K. Crane, Developability of triangle meshes, ACM Trans. Graph., 37:4(2018), 77:1-77:14. doi:10.1145/3197517.3201303, http://doi.acm.org/10.1145/3197517.3201303.
[26] L. Fernández-Jambrina and F. Pérez-Arribas, Developable surface patches bounded by NURBS curves, J. Comput. Math., 38:5(2020), 715-731.
[27] D.J. Struik, Lectures on classical differential geometry, 2nd Edition, Dover Publications Inc., New York, 1988.
[28] G. Farin, Curves and surfaces for CAGD: a practical guide, 5th Edition, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.
[29] M.S. Floater, Derivatives of rational Bézier curves, Comput. Aided Geom. Design, 9:3(1992), 161-174. doi:10.1016/0167-8396(92)90014-G.
[30] R.R. Patterson, Projective transformations of the parameter of a Bernstein-Bézier curve, ACM Trans. Graph., 4:4(1985), 276-290. https://dl.acm.org/doi/10.1145/6116.6119.
[1] Wujie Liu, Xin Li. CAN A CUBIC SPLINE CURVE BE G3 [J]. Journal of Computational Mathematics, 2021, 39(2): 178-191.
[2] Leonardo Fern, ez-Jambrina, Francisco P, erez-Arribas. DEVELOPABLE SURFACE PATCHES BOUNDED BY NURBS CURVES [J]. Journal of Computational Mathematics, 2020, 38(5): 715-731.
[3] Yufeng Tian, Maodong Pan. CORNER-CUTTING SUBDIVISION SURFACES OF GENERAL DEGREES WITH PARAMETERS [J]. Journal of Computational Mathematics, 2020, 38(5): 732-747.
[4] Fang Deng, Chao Zeng, Meng Wu, Jiansong Deng. BASES OF BIQUADRATIC POLYNOMIAL SPLINE SPACES OVER HIERARCHICAL T-MESHES [J]. Journal of Computational Mathematics, 2017, 35(1): 91-120.
[5] Shuiping Yang, Aiguo Xiao. AN EFFICIENT NUMERICAL METHOD FOR FRACTIONAL DIFFERENTIAL EQUATIONS WITH TWO CAPUTO DERIVATIVES [J]. Journal of Computational Mathematics, 2016, 34(2): 113-134.
[6] Yuanpeng Zhu, Xuli Han. NEW TRIGONOMETRIC BASIS POSSESSING EXPONENTIAL SHAPE PARAMETERS [J]. Journal of Computational Mathematics, 2015, 33(6): 642-684.
[7] Xin Li. SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES [J]. Journal of Computational Mathematics, 2015, 33(4): 428-442.
[8] Qing-Jie Guo, Ren-Hong Wang, Chong-Jun Li. ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES [J]. Journal of Computational Mathematics, 2015, 33(3): 248-262.
[9] Xinping Shao, Danfu Han, Xianliang Hu. A P-VERSION TWO LEVEL SPLINE METHOD FORSEMI-LINEAR ELLIPTIC EQUATIONS [J]. Journal of Computational Mathematics, 2012, 30(5): 544-554.
[10] Kai Qu, Renhong Wang, Chungang Zhu. FITTING C1 SURFACES TO SCATTERED DATA WITH S21m,n(2)) [J]. Journal of Computational Mathematics, 2011, 29(4): 396-414.
[11] Suqin Chen, Yingwei Wang, Xionghua Wu. RATIONAL SPECTRAL COLLOCATION METHOD FOR A COUPLED SYSTEM OF SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS [J]. Journal of Computational Mathematics, 2011, 29(4): 458-473.
[12] Ying Chen, Min Huang . UNIFORM SUPERCONVERGENCE OF GALERKIN METHODS FOR SINGULARLY
PERTURBED PROBLEMS
[J]. Journal of Computational Mathematics, 2010, 28(2): 273-288.
[13] Tianhe Zhou, Danfu Han. HERMITE SCATTERED DATA FITTING BY THE PENALIZED LEAST SQUARES
METHOD
[J]. Journal of Computational Mathematics, 2009, 27(6): 802-811.
[14] Renhong Wang , Jinming Wu . REAL ROOT ISOLATION OF SPLINE FUNCTIONS [J]. Journal of Computational Mathematics, 2008, 26(1): 69-75.
[15] M.Y. Xia, G.H. Zhang, G.L. Dai, C.H. Chan. STABLE SOLUTION OF TIME DOMAIN INTEGRAL EQUATION METHODSUSING QUADRATIC B-SPLINE TEMPORAL BASIS FUNCTIONS [J]. Journal of Computational Mathematics, 2007, 25(3): 374-384.
Viewed
Full text


Abstract