Previous Articles    

A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES

Gabriel N. Gatica1, Mauricio Munar1, Filánder A. Sequeira2   

  1. 1. CI2MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile;
    2. Escuela de Matemática, Universidad Nacional, Campus Omar Dengo, Heredia, Costa Rica
  • Received:2019-08-15 Revised:2019-11-28 Published:2021-04-12
  • Contact: Gabriel N. Gatica,Email:ggatica@ci2ma.udec.cl
  • Supported by:
    This research was partially supported by CONICYT-Chile through the project AFB170001 of the PIA Program:Concurso Apoyo a Centros Científicos y Tecnológicos de Excelencia con Financiamiento Basal, and the Becas-CONICYT Programme for foreign students; by Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción; and by Universidad Nacional, Costa Rica, through the project 0103-18.

Gabriel N. Gatica, Mauricio Munar, Filánder A. Sequeira. A MIXED VIRTUAL ELEMENT METHOD FOR THE BOUSSINESQ PROBLEM ON POLYGONAL MESHES[J]. Journal of Computational Mathematics, 2021, 39(3): 392-427.

In this work we introduce and analyze a mixed virtual element method (mixed-VEM) for the two-dimensional stationary Boussinesq problem. The continuous formulation is based on the introduction of a pseudostress tensor depending nonlinearly on the velocity, which allows to obtain an equivalent model in which the main unknowns are given by the aforementioned pseudostress tensor, the velocity and the temperature, whereas the pressure is computed via a postprocessing formula. In addition, an augmented approach together with a fixed point strategy is used to analyze the well-posedness of the resulting continuous formulation. Regarding the discrete problem, we follow the approach employed in a previous work dealing with the Navier-Stokes equations, and couple it with a VEM for the convection-diffusion equation modelling the temperature. More precisely, we use a mixed-VEM for the scheme associated with the fluid equations in such a way that the pseudostress and the velocity are approximated on virtual element subspaces of ${\Bbb H}$(div) and H1, respectively, whereas a VEM is proposed to approximate the temperature on a virtual element subspace of H1. In this way, we make use of the L2-orthogonal projectors onto suitable polynomial spaces, which allows the explicit integration of the terms that appear in the bilinear and trilinear forms involved in the scheme for the fluid equations. On the other hand, in order to manipulate the bilinear form associated to the heat equations, we define a suitable projector onto a space of polynomials to deal with the fact that the diffusion tensor, which represents the thermal conductivity, is variable. Next, the corresponding solvability analysis is performed using again appropriate fixed-point arguments. Further, Strang-type estimates are applied to derive the a priori error estimates for the components of the virtual element solution as well as for the fully computable projections of them and the postprocessed pressure. The corresponding rates of convergence are also established. Finally, several numerical examples illustrating the performance of the mixed-VEM scheme and confirming these theoretical rates are presented.

CLC Number: 

[1] B. Ahmad, A. Alsaedi, F. Brezzi, L. Marini, and A. Russo, Equivalent projectors for virtual element methods. Comput. Math. Appl., 66:3(2013), 376-391.
[2] A. Allendes, G. Barrenechea and C. Naranjo. A divergence-free low-order stabilized finite element method for a generalized steady state Boussinesq problem. Comput. Methods Appl. Mech. Engrg., 340(2018), 90-120.
[3] J. Almonacid, G.N. Gatica and R. Oyarzúa, A mixed-primal finite element method for the Boussinesq problem with temperature-dependent viscosity. Calcolo, 55:3(2018), Art. 36, 42.
[4] J. Almonacid, G.N. Gatica, R. Oyarzúa and R. Ruiz-Baier, A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity. Netw. Heterog. Media, 15:2(2020), 215-245.
[5] J. Almonacid and G.N. Gatica, A fully-mixed finite element method for the Boussinesq problem with temperature-dependent parameters. Comput. Methods Appl. Math., 20:2(2020), 187-213.
[6] M. Astorino, J.F. Gerbeau, O. Pantz and K.F. Traoré, Fluid-structure interaction and multi-body contact:application to aortic valves. Comput. Methods Appl. Mech. Engrg., 198:45-46(2009), 3603-3612.
[7] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. Marini, and A. Russo, Basic principles of virtual element methods. Math. Models Methods Appl. Sci., 23:1(2013), 199-214.
[8] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo, Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal., 50:3(2016), 727-747.
[9] L. Beirão da Veiga, F. Brezzi, L. Marini, and A. Russo, H(div) and H(curl)-conforming virtual element methods. Numer. Math., 133:2(2016), 303-332.
[10] L. Beirão da Veiga, F. Brezzi, L. D. Marini, and A. Russo, Virtual element method for general second-order elliptic problems on polygonal meshes. Math. Models Methods Appl. Sci., 26:4(2016), 729-750.
[11] L. Beirão da Veiga, F. Dassi and A. Russo, High-order virtual element method on polyhedral meshes. Comput. Math. Appl., 74:5(2017), 1110-1122.
[12] L. Beirão da Veiga and G. Manzini, A virtual element method with arbitrary regularity. IMA J. Numer. Anal., 34:2(2014), 759-781.
[13] L. Beirão da Veiga, C. Lovadina, and D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Engrg., 295(2015), 327-346.
[14] L. Beirão da Veiga, C. Lovadina, and G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal., 56:3(2018), 1210-1242.
[15] C. Bernardi, B. Métivet, and B. Pernaud-Thomas. Couplage des équations de Navier-Stokes et de la chaleur:le modéle et son approximation par éléments finis. RAIRO:Modél. Math. Anal. Numér., 29:7(1995), 871-921.
[16] S.C. Brenner, Q. Guan and L.-Y. Sung, Some estimates for virtual element methods. Comput. Methods Appl. Math., 17:4(2017), 553-574.
[17] F. Brezzi, R.S. Falk, and L. Marini, Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal., 48:4(2014), 1227-1240.
[18] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York, 1991.
[19] J. Boland and W. Layton, Error analysis for finite element methods for steady natural convection problems. Numer. Funct. Anal. Optim., 11:5-6(1990), 449-483.
[20] E. Cáceres, G.N. Gatica, and F.A. Sequeira, A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci., 27:4(2017), 707-743.
[21] E. Cáceres, G.N. Gatica, and F.A. Sequeira, A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal., 56:1(2018), 317-343.
[22] J. Camaño, G.N. Gatica, R. Oyarzúa, and R. Ruiz-Baier, An augmented stress-based mixed finite element method for the steady state Navier-Stokes equations with nonlinear viscosity. Numer. Methods Partial Differential Equations, 33:5(2017), 1692-1725.
[23] J. Camaño, G.N. Gatica, R. Oyarzúa, and G. Tierra, An augmented mixed finite element method for the Navier-Stokes equations with variable viscosity. SIAM J. Numer. Anal., 54:2(2016), 1069-1092.
[24] J. Camaño, R. Oyarzúa, and G. Tierra, Analysis of an augmented mixed-FEM for the NavierStokes problem. Math. Comp., 86:304(2017), 589-615.
[25] A. Cangiani, P. Chatzipantelidis, G. Diwan and E.H. Georgoulis, Virtual element method for quasilinear elliptic problems. IMA J. Numer. Anal. DOI:https://doi.org/10.1093/imanum/drz035.
[26] S. Caucao, G.N. Gatica, R. Oyarzúa and I. Sebestova, A fully-mixed finite element method for the Navier-Stokes/Darcy coupled problem with nonlinear viscosity. J. Numer. Math., 25:2(2017), 55-88.
[27] T. Chacón, M. Gómez, F. Hecht, S. Rubino, and I. Sánchez, A high-order local projection stabilization method for natural convection problems. J. Sci. Comput., 74:2(2018), 667-692.
[28] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, vol. 40 of Classics in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original[North-Holland, Amsterdam].
[29] E. Colmenares, G.N. Gatica, and R. Oyarzúa, Analysis of an augmented mixed-primal formulation for the stationary Boussinesq problem. Numer. Methods Partial Differential Equations, 32:2(2016), 445-478.
[30] E. Colmenares and M. Neilan, Dual-mixed finite element methods for the stationary Boussinesq problem. Comput. Math. Appl., 72:7(2016), 1828-1850.
[31] E. Colmenares, G.N. Gatica and R. Oyarzúa, An augmented fully-mixed finite element method for the stationary Boussinesq problem. Calcolo, 54:1(2017), 167-205.
[32] M. Discacciati and R. Oyarzúa, A conforming mixed finite element method for the NavierStokes/Darcy coupled problem. Numer. Math., 135:2(2017), 571-606.
[33] L.E. Figueroa, G.N. Gatica, and A. Márquez, Augmented mixed finite element methods for the stationary Stokes equations. SIAM J. Sci. Comput., 31:2(2008/09), 1082-1119.
[34] G.N. Gatica, A Simple Introduction to the Mixed Finite Element Method. Theory and applications. SpringerBriefs in Mathematics, Springer, Cham, 2014.
[35] G.N. Gatica, A,. Márquez, R. Oyarzúa and R. Rebolledo, Analysis of an augmented fully-mixed approach for the coupling of quasi-Newtonian fluids and porous media. Comput. Methods Appl. Mech. Engrg., 270:1(2014), 76-112.
[36] G.N. Gatica, M. Munar, and F.A. Sequeira, A mixed virtual element method for the Navier-Stokes equations. Math. Models Methods Appl. Sci., 28:14(2018), 2719-2762.
[37] G.N. Gatica, M. Munar, and F.A. Sequeira, A mixed virtual element method for a nonlinear Brinkman model of porous media flow. Calcolo, 55:2(2018), Art. 21, 36.
[38] L. Gatica, R. Oyarzúa and N. Sánchez, A priori and a posteriori error analysis of an augmented mixed-FEM for the Navier-Stokes-Brinkman problem. Comput. Math. Appl., 75:7(2018), 2420-2444.
[39] L.I.G. Kovasznay, Laminar flow behind a two-dimensional grid. Proceedings of the Cambridge Philosophical Society, 44(1948), 58-C62.
[40] D. Mora, G. Rivera and R. Rodríguez, A virtual element method for the Steklov eigenvalue problem. Math. Models Methods Appl. Sci., 25:8(2015), 1421-1445.
[41] C.E. Pérez, J.M. Thomas, S. Blancher, and R. Creff, The steady Navier-Stokes/energy system with temperature-dependent viscosity. I:Analysis of the continuous problem. Internat. J. Numer. Methods Fluids, 56:1(2008), 63-89.
[42] C.E. Pérez, J.-M. Thomas, S. Blancher, and R. Creff, The steady Navier-Stokes/energy system with temperature-dependent viscosity. II:The discrete problem and numerical experiments. Internat. J. Numer. Methods Fluids, 56:1(2008), 91-114.
[43] J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods. In Handbook of Numerical Analysis, Handb. Numer. Anal. II, North-Holland, Amsterdam, II (1991), 523-639.
[44] R. Van Loon, P.D. Anderson and F.N. Van de Vosse, A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J. Comput. Phys., 217:2(2006), 806-823.
[45] L. Xin and C. Zhangxin, The nonconforming virtual element method for the Navier-Stokes equations. Adv. Comput. Math., 45:1(2019), 51-74.
[1] Qingguo Hong, Jinchao Xu. UNIFORM STABILITY AND ERROR ANALYSIS FOR SOME DISCONTINUOUS GALERKIN METHODS [J]. Journal of Computational Mathematics, 2021, 39(2): 283-310.
[2] Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 63-80.
[3] Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767.
[4] Gerard Awanou, Hengguang Li, Eric Malitz. A TWO-GRID METHOD FOR THE C0 INTERIOR PENALTY DISCRETIZATION OF THE MONGE-AMPERE EQUATION [J]. Journal of Computational Mathematics, 2020, 38(4): 547-564.
[5] Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565-579.
[6] Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623.
[7] Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
[8] Chunmei Xie, Minfu Feng. A NEW STABILIZED FINITE ELEMENT METHOD FOR SOLVING TRANSIENT NAVIER-STOKES EQUATIONS WITH HIGH REYNOLDS NUMBER [J]. Journal of Computational Mathematics, 2020, 38(3): 395-416.
[9] Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468.
[10] Zhiming Chen, Rui Tuo, Wenlong Zhang. A BALANCED OVERSAMPLING FINITE ELEMENT METHOD FOR ELLIPTIC PROBLEMS WITH OBSERVATIONAL BOUNDARY DATA [J]. Journal of Computational Mathematics, 2020, 38(2): 355-374.
[11] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[12] Baiju Zhang, Yan Yang, Minfu Feng. A C0-WEAK GALERKIN FINITE ELEMENT METHOD FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION [J]. Journal of Computational Mathematics, 2020, 38(2): 310-336.
[13] Yunqing Huang, Huayi Wei, Wei Yang, Nianyu Yi. RECOVERY BASED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATION IN 2D [J]. Journal of Computational Mathematics, 2020, 38(1): 84-102.
[14] Hongliang Li, Pingbing Ming, Zhongci Shi. THE QUADRATIC SPECHT TRIANGLE [J]. Journal of Computational Mathematics, 2020, 38(1): 103-124.
[15] Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142-175.
Viewed
Full text


Abstract