Kaibo Hu^{1}, Ragnar Winther^{2}
[1] R.S. Falk, R. Winther, The bubble transform:A new tool for analysis of finite element methods, Foundations of Computational Mathematics, (2013), 132. [2] C. Bernardi, Y. Maday, Spectral methods, Handbook of numerical analysis, 5(1997), 209485. [3] N. Hu, X.Z. Guo, I. Katz, Bounds for eigenvalues and condition numbers in the pversion of the finite element method, Mathematics of Computation of the American Mathematical Society, 67:224(1998), 14231450. [4] C. Schwab, pand hpfinite element methods:Theory and applications in solid and fluid mechanics, Oxford University Press, 1998. [5] B.A. Szabo, I. Babuška, Finite element analysis, John Wiley & Sons, 1991. [6] S. Beuchler, V. Pillwein, J. Schöberl, S. Zaglmayr, Sparsity optimized high order finite element functions on simplices, Numerical and Symbolic Scientific Computing, pages 2144, Springer, 2012. [7] T. Führer, J.M. Melenk, D. Praetorius, A. Rieder, Optimal additive Schwarz methods for the hpBEM:The hypersingular integral operator in 3D on locally refined meshes, Computers & Mathematics with Applications, 70:7(2015), 15831605. [8] G. Karniadakis, S. Sherwin, Spectral/hp element methods for computational fluid dynamics, Oxford University Press, 2013. [9] H. Li, J. Shen, Optimal error estimates in Jacobiweighted Sobolev spaces for polynomial approximations on the triangle, Mathematics of Computation, 79:271(2010), 16211646. [10] S. Zaglmayr, High order finite element methods for electromagnetic field computation, PhD thesis, J. K. University Linz, 2006. [11] J. Xin, W. Cai, Wellconditioned orthonormal hierarchical L^{2} bases on ${\Bbb R}$^{n} simplicial elements, Journal of scientific computing, 50:2(2012), 446461. [12] C.F. Dunkl, Y. Xu, Orthogonal polynomials of several variables, Cambridge University Press, 2014. [13] Z. Ciesielskii, J. Domsta, The degenerate bspline basis as basis in the space of algebraic polynomials, Ann. Polon. Math, 26(1985), 7179. [14] T. Lyche, K. Scherer, On the pnorm condition number of the multivariate triangular Bernstein basis, Journal of computational and applied mathematics, 119:1(2000), 259273. [15] P. Oswald, Frames and space splittings in Hilbert spaces, Lectures Notes Part I, Bell. Labs, 1997. [16] T. Koornwinder, Twovariable analogues of the classical orthogonal polynomials, Theory and applications of special functions, (1975), 435495. [17] L. Zhang, T. Cui, H. Liu, A set of symmetric quadrature rules on triangles and tetrahedra, Journal of Computational Mathematics, (2009), 8996. [18] K.A. Mardal, R. Winther, Preconditioning discretizations of systems of partial differential equations, Numerical Linear Algebra with Applications, 18:1(2011), 140. [19] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM review, 34:4(1992), 581613. [20] J. Xu, L.T. Zikatanov, Algebraic multigrid methods, arXiv preprint arXiv:1611.01917, 2016. [21] Y.J. Lee, J. Wu, J. Xu, L. Zikatanov, On the convergence of iterative methods for semidefinite linear systems, SIAM journal on matrix analysis and applications, 28:3(2006), 634641. [22] J. Schöberl, J.M. Melenk, C. Pechstein, S. Zaglmayr, Additive Schwarz preconditioning for pversion triangular and tetrahedral finite elements, IMA Journal of Numerical Analysis, 28:1(2008), 124. [23] J. Xin, W. Cai, A wellconditioned hierarchical basis for triangular H(curl)conforming elements, Commun. Comput. Phys, 9:3(2011), 780806. 
[1]  Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130146. 
[2]  Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748767. 
[3]  Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTEDINVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606623. 
[4]  Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUADCURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565579. 
[5]  Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502527. 
[6]  Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLIDSTATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452468. 
[7]  Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICITEXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGHNAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469486. 
[8]  Maohua Ran, Chengjian Zhang. A HIGHORDER ACCURACY METHOD FOR SOLVING THE FRACTIONAL DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(2): 239253. 
[9]  Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254290. 
[10]  Junming Duan, Huazhong Tang. AN EFFICIENT ADER DISCONTINUOUS GALERKIN SCHEME FOR DIRECTLY SOLVING HAMILTONJACOBI EQUATION [J]. Journal of Computational Mathematics, 2020, 38(1): 5883. 
[11]  Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142175. 
[12]  Yu Du, Haijun Wu, Zhimin Zhang. SUPERCONVERGENCE ANALYSIS OF THE POLYNOMIAL PRESERVING RECOVERY FOR ELLIPTIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 223238. 
[13]  Weijie Huang, Zhiping Li. A MIXED FINITE ELEMENT METHOD FOR MULTICAVITY COMPUTATION IN INCOMPRESSIBLE NONLINEAR ELASTICITY [J]. Journal of Computational Mathematics, 2019, 37(5): 609628. 
[14]  Li Guo, Hengguang Li, Yang Yang. INTERIOR ESTIMATES OF SEMIDISCRETE FINITE ELEMENT METHODS FOR PARABOLIC PROBLEMS WITH DISTRIBUTIONAL DATA [J]. Journal of Computational Mathematics, 2019, 37(4): 458474. 
[15]  Weimin Han, Ziping Huang, Cheng Wang, Wei Xu. NUMERICAL ANALYSIS OF ELLIPTIC HEMIVARIATIONAL INEQUALITIES FOR SEMIPERMEABLE MEDIA [J]. Journal of Computational Mathematics, 2019, 37(4): 506523. 
Viewed  
Full text 


Abstract 

