El Madkouri Abdessamad, Ellabib Abdellatif
El Madkouri Abdessamad, Ellabib Abdellatif. SOURCE TERM IDENTIFICATION WITH DISCONTINUOUS DUAL RECIPROCITY APPROXIMATION AND QUASINEWTON METHOD FROM BOUNDARY OBSERVATIONS[J]. Journal of Computational Mathematics, 2021, 39(3): 311332.
[1] C.J. Alves, J.B. Abdallah, M. Jaoua, Recovery of cracks using a pointsource reciprocity gap function, Inverse Problems in Science and Engineering 12:5(2004), 519534. [2] S. Andrieux, A.B. Abda, Identification of planar cracks by complete overdetermined data:inversion formulae, Inverse problems, 12:5(1996), 553. [3] J. Barry, Heat source determination in waste rock dumps. river edge 1998. [4] J. Frankel, Residualminimization leastsquares method for inverse heat conduction, Computers & Mathematics with Applications, 32:4(1996), 117130. [5] N. Magnoli, G. Viano, The source identification problem in electromagnetic theory, Journal of Mathematical Physics, 38:5(1997), 23662388. [6] A. El Badia, T. HaDuong, On an inverse source problem for the heat equation. application to a pollution detection problem, Journal of inverse and illposed problems, 10:6(2002), 585599. [7] V. Isakov, Inverse problems for partial differential equations, Vol. 127, Springer, 2006. [8] A.E. Badia, A.E. Hajj, Identification of dislocations in materials from boundary measurements, SIAM Journal on Applied Mathematics, 73:1(2013), 84103. [9] M.A. Anastasio, J. Zhang, D. Modgil, P.J. La Rivière, Application of inverse source concepts to photoacoustic tomography, Inverse Problems, 23:6(2007), S21. [10] P. Stefanov, G. Uhlmann, Thermoacoustic tomography with variable sound speed, Inverse Problems, 25:7(2009), 075011. [11] M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa, Magnetoencephalographytheory, instrumentation, and applications to noninvasive studies of the working human brain, Reviews of modern Physics, 65:2(1993), 413. [12] J.C. Mosher, P.S. Lewis, R.M. Leahy, Multiple dipole modeling and localization from spatiotemporal meg data, IEEE transactions on biomedical engineering, 39:6(1992), 541557. [13] S.R. Arridge, Optical tomography in medical imaging, Inverse problems, 15:2(1999), R41. [14] J. Frankel, Constraining inverse stefan design problems, Zeitschrift für angewandte Mathematik und Physik ZAMP, 47:3(1996), 456466. [15] Y.E. Anikonov, B. Bubnov, G. Erokhin, Inverse and illposed sources problems, Vol. 9, Walter de Gruyter, 2013. [16] V. Isakov, Inverse source problems, no. 34, American Mathematical Soc., 1990. [17] R.A. Adams, J.J. Fournier, Sobolev Spaces (Pure and applied mathematics; v. 140), Elsevier, 2003. [18] A. El Badia, Inverse source problem in an anisotropic medium by boundary measurements, Inverse Problems, 21:5(2005), 1487. [19] L. Ling, Y. Hon, M. Yamamoto, Inverse source identification for poisson equation, Inverse problems in science and engineering, 13:4(2005), 433447. [20] Y. Hon, M. Li, Y.A. Melnikov, Inverse source identification by green's function, Engineering Analysis with Boundary Elements, 34:4(2010), 352358. [21] L. Ling, Y. Hon, M. Yamamoto, Inverse source identification for poisson equation, Inverse problems in science and engineering, 13:4(2005), 433447. [22] M. Hanke, W. Rundell, On rational approximation methods for inverse source problems, Inverse Probl. Imaging, 5(2011), 185202. [23] Y. Hon, T. Wei, A fundamental solution method for inverse heat conduction problem, Engineering Analysis with Boundary Elements, 28:5(2004), 489495. [24] Y. Hon, T. Wei, Numerical computation for multidimensional inverse heat conduction problem, Computer Modeling in Engineering & Sciences, 7:2(2005), 11932. [25] Y. Kagawa, Y. Sun, O. Matsumoto, Inverse solution for poisson equations using drm boundary element modelsidentification of space charge distribution, Inverse Problems in Engineering, 1:3(1995), 247265. [26] M. Trlep, A. Hamler, B. Hribernik, The use of drm for inverse problems of poisson's equation, IEEE transactions on magnetics, 36:4(2000), 16491652. [27] A. Farcas, L. Elliott, D. Ingham, D. Lesnic, N. Mera, A dual reciprocity boundary element method for the regularized numerical solution of the inverse source problem associated to the poisson equation, Inverse Problems in Engineering, 11:2(2003), 123139. [28] A. El Badia, Inverse source problem in an anisotropic medium by boundary measurements, Inverse Problems, 21:5(2005), 1487. [29] L. Ling, Y. Hon, M. Yamamoto, Inverse source identification for poisson equation, Inverse problems in science and engineering, 13:4(2005), 433447. [30] Hongyang Chao, An iterative algorithm for the coefficient inverse problem of differential equations, Journal of computational mathematics, 8(1990), 298306. [31] W. Cheng, L.L. Zhao, C.L. Fu, Source term identification for an axisymmetric inverse heat conduction problem, Computers & mathematics with applications, 59:1(2010), 142148. [32] F. AlMusallam, A. Boumenir, The reconstruction of a source and a potential from boundary measurements, Journal of Mathematical Analysis and Applications, 435:1(2016), 800808. [33] X. Wang, Y. Guo, D. Zhang, H. Liu, Fourier method for recovering acoustic sources from multifrequency farfield data, Inverse Problems, 33:3(2017), 035001. [34] B. Abdelaziz, A. El Badia, A. El Hajj, Direct algorithm for multipolar sources reconstruction, Journal of Mathematical Analysis and Applications, 428:1(2015), 306336. [35] P. Partridge, C. Brebbia, L. Wrobel, The dual reciprocity boundary element method. southampton, Computational mechanics publications, Elsevier. 1991. [36] C.G. Broyden, The convergence of a class of doublerank minimization algorithms 1. general considerations, IMA Journal of Applied Mathematics, 6:1(1970), 7690. [37] R. Fletcher, A new approach to variable metric algorithms, The computer journal, 13:3(1970), 317322. [38] D. Goldfarb, A family of variablemetric methods derived by variational means, Mathematics of computation, 24:109(1970), 2326. [39] D.F. Shanno, Conditioning of quasinewton methods for function minimization, Mathematics of computation, 24:111(1970), 647656. [40] O. Steinbach, Numerical approximation methods for elliptic boundary value problems:finite and boundary elements, Springer Science & Business Media, 2007. [41] O. Steinbach, W.L. Wendland, On c. neumann's method for secondorder elliptic systems in domains with nonsmooth boundaries, Journal of mathematical analysis and applications, 262:2(2001), 733748. [42] Ruming Zhang and Jiguang Sun, The reconstruction of obstacles in a waveguide using finite elements, Journal of computational mathematics, 36(2018), 2946. [43] Y. Zhang, S. Zhu, On the choice of interpolation functions used in the dualreciprocity boundaryelement method, Engineering Analysis with Boundary Elements, 13:4(1994), 387396. 
[1]  Jing Gao, Marissa Condon, Arieh Iserles, Benjamin Gilvey, Jon Trevelyan. QUADRATURE METHODS FOR HIGHLY OSCILLATORY SINGULAR INTEGRALS [J]. Journal of Computational Mathematics, 2021, 39(2): 227260. 
[2]  Heiko Gimperlein, Ceyhun Özdemir, Ernst P. Stephan. TIME DOMAIN BOUNDARY ELEMENT METHODS FOR THE NEUMANN PROBLEM: ERROR ESTIMATES AND ACOUSTIC PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(1): 7089. 
[3]  H. Harbrecht, M. Utzinger. ON ADAPTIVE WAVELET BOUNDARY ELEMENT METHODS [J]. Journal of Computational Mathematics, 2018, 36(1): 90109. 
[4]  Ernst P. Stephan. The hpVersion of BEM  Fast Convergence, Adaptivity and Efficient Preconditioning [J]. Journal of Computational Mathematics, 2009, 27(23): 348359. 
[5]  Sheng Zhang,Dehao Yu. MULTIGRID ALGORITHM FOR THE COUPLING SYSTEM OF NATURAL BOUNDARYELEMENT METHOD AND FINITE ELEMENT METHOD FOR UNBOUNDED DOMAINPROBLEMS [J]. Journal of Computational Mathematics, 2007, 25(1): 13026. 
Viewed  
Full text 


Abstract 

