Jing Gao^{1}, Marissa Condon^{2}, Arieh Iserles^{3}, Benjamin Gilvey^{4}, Jon Trevelyan^{4}
[1] S. Amari, J. Bornemann, Efficient numerical computation of singular integrals with applications to electromagnetics. IEEE Trans. Antennas Propag., 43(1995), 13431348. [2] A. Asheim, A. Deaño, D. Huybrechs, H. Wang, A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discret. Contin. Dyn. Syst. A, 34(2014), 883901. [3] C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. Auckland:McGrawHill; 1978. [4] S.N. ChandlerWilde, I.G. Graham, S. Langdon, E.A. Spence, Numericalasymptotic boundary integral methods in highfrequency acoustic scattering. Acta Numer., 21(2012), 89305. [5] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration[2nd ed]. New York:Academic Press; 1984. [6] A. Deaño, D. Huybrechs, A. Iserles, The kissing polynomials and their Hankel derminants. 2015. http://www.damtp.cam.ac.uk/user/na/NApapers/NA201501.pdf. [7] A. Deaño, D. Huybrechs, A. Iserles, Computing Highly Oscillatory Integrals. Philadelphia:SIAM; 2018. [8] V. Dominguez, FilonClenshawCurtis rules for a class of highlyoscillatory integrals with logarithmic singularities. J. Comp. Appl. Math., 261(2014), 299319. [9] G.A. Evans, K.C. Chung, Some theoretical aspects of generalised quadrature methods. J. Complexity, 19(2003), 272285. [10] L.O. Fichte, S. Lange, M. Clemens, Numerical quadrature for the approximation of singular oscillating integrals. Adv. Radio Sci., 4(2006), 1115. [11] M.E. Honnor, J. Trevelyan, D. Huybrechs, Numerical evaluation of 2D partition of unity boundary integrals for Helmholtz problems. J. Comp. Appl. Math., 234(2010), 16561662. [12] D. Huybrechs, S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation. SIAM J. Numer. Anal., 44(2006), 10261048. [13] A. Iserles, S.P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer. Math., 44(2004), 755772. [14] A. Iserles, S.P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives. Proc. Royal Soc. A, 461(2005), 13831399. [15] H. Kang, S. Xiang, G. He, Computation of integrals with oscillatory and singular integrands using Chebyshev expansions. J. Comp. Appl. Math., 242(2013), 141156. [16] D. Levin, Procedures for computing one and two dimensional integrals of functions with rapid irregular oscillations. Math. Comput., 38(1982), 531538. [17] A. Maher, N.B. Pleshchinskii, Plane electromagnetic wave scattering and diffraction in a stratified medium. Paper presented at:International Conference on Mathematical Methods in Electromagnetic Theory, 2000, Kharkov, Ukraine. [18] K. Nesvit, Scattering and propagation of the TE/TM waves on prefractal impedance grating in numerical results. Paper presented at:8th European Conference on Antennas and Propagation; (2014), 27732777. Hague, Netherlands. [19] J. Niegemann, Efficient cubature rules for the numerical integration of logarithmic singularities. Paper presented at:2014 International Conference on Electromagnetics in Advanced Applications; (2014), 601604. Palm Beach, Aruba. [20] S. Olver, Momentfree numerical integration of highly oscillatory functions. IMA J. Numer. Anal., 26(2006), 213227. [21] E. PerreyDebain, J. Trevelyan, P. Bettess, Wave boundary elements:a theoretical overview presenting applications in scattering of short waves. Eng. Anal. Bound. Elem., 28(2004), 131 141. [22] P. Sjölin, Some remarks on singular oscillatory integrals and convolution operators. Proc. Am. Math. Soc., 145(2017), 38433848. [23] E.M. Stein, Harmonic Analysis:RealVariable Methods, Orthogonality, and Oscillatory Integrals. Princeton, NJ:Princeton University Press; 1993. [24] R. Wong, Asymptotic Approximations of Integrals. New York:Academic Press; 1989. 
[1]  Heiko Gimperlein, Ceyhun Özdemir, Ernst P. Stephan. TIME DOMAIN BOUNDARY ELEMENT METHODS FOR THE NEUMANN PROBLEM: ERROR ESTIMATES AND ACOUSTIC PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(1): 7089. 
[2]  H. Harbrecht, M. Utzinger. ON ADAPTIVE WAVELET BOUNDARY ELEMENT METHODS [J]. Journal of Computational Mathematics, 2018, 36(1): 90109. 
[3]  Ernst P. Stephan. The hpVersion of BEM  Fast Convergence, Adaptivity and Efficient Preconditioning [J]. Journal of Computational Mathematics, 2009, 27(23): 348359. 
[4]  Sheng Zhang,Dehao Yu. MULTIGRID ALGORITHM FOR THE COUPLING SYSTEM OF NATURAL BOUNDARYELEMENT METHOD AND FINITE ELEMENT METHOD FOR UNBOUNDED DOMAINPROBLEMS [J]. Journal of Computational Mathematics, 2007, 25(1): 13026. 
[5]  Yunqing Huang,Wei Li,Fang Su. OPTIMAL ERROR ESTIMATES OF THE PARTITION OF UNITY METHOD WITH LOCALPOLYNOMIAL APPROXIMATION SPACES [J]. Journal of Computational Mathematics, 2006, 24(3): 365372. 
[6]  Ping Bing MING,Zhong Ci SHI. MATHEMATICAL ANALYSIS FOR QUADRILATERAL ROTATED Q1 ELEMENT Ⅲ: THE EFFECT OF NUMERICAL INTEGRATION [J]. Journal of Computational Mathematics, 2003, 21(3): 287294. 
Viewed  
Full text 


Abstract 

