Jonathan W. Siegel
[1] P.A. Absil, R. Mahony and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton University Press, Princeton 2009. [2] S. Bubeck et al. Convex optimization:Algorithms and complexity, Foundations and Trends R in Machine Learning, 8:34(2005), 231357. [3] A. Edelman, T. A Arias and S. T Smith, The geometry of algorithms with orthogonality constraints, SIAM journal on Matrix Analysis and Applications, 20:2(1998), 303353. [4] W. Huang, K. A Gallivan and P.A. Absil, A Broyden class of quasiNewton methods for Riemannian optimization, SIAM Journal on Optimization, 25:3(2015), 16601685. [5] W. Huang et al. ROPTLIB:an objectoriented C++ library for optimization on Riemannian manifolds, ACM Transactions on Mathematical Software (TOMS), 44:4(2018), 43. [6] S. Lang, Fundamentals of differential geometry, Springer Science & Business Media, 191(2012). [7] Q. H. Lin and L. Xiao, An adaptive accelerated proximal gradient method and its homotopy continuation for sparse optimization, Int. Conference on Machine Learning, (2014), 7381. [8] Y.Y. Liu, F.H. Shang, J. Cheng, H. Cheng and L.C. Jiao, Accelerated firstorder methods for geodesically convex optimization on Riemannian manifolds, Advances in Neural Information Processing Systems, (2017), 48684877. [9] R. M Martin, Electronic structure:basic theory and practical methods, Cambridge university press, Cambridge 2004. [10] Y. Nesterov, A method of solving a convex programming problem with convergence rate O (1/k^{2}), Soviet Mathematics Doklady, 27:2(1983), 372376. [11] Y. Nesterov, Gradient methods for minimizing composite functions, Mathematical Programming, 140:1(2013), 125161. [12] B. O'donoghue and E. Candes, Adaptive restart for accelerated gradient schemes, Foundations of computational mathematics, 15:3(2015), 715732. [13] V. Ozolinš et al. Compressed modes for variational problems in mathematics and physics, Proceedings of the National Academy of Sciences, 110:46(2013), 1836818373. [14] J. W. Siegel, Accelerated FirstOrder Optimization with Orthogonality Constraints, Diss. UCLA, 2018. [15] J. Sherman and W. J Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, The Annals of Mathematical Statistics, 21:1(1950), 124127. [16] M. D Spivak, A comprehensive introduction to differential geometry, Publish or perish, Berkeley 1970. [17] W. J. Su, S. Boyd and E. J Candes, A differential equation for modeling Nesterov's accelerated gradient method:theory and insights, Journal of Machine Learning Research, 17:153(2016), 143. [18] Z. W. Wen and W. T. Yin, A feasible method for optimization with orthogonality constraints, Mathematical Programming, 142:12(2013), 397434. [19] S. T. Yau, Nonexistence of continuous convex functions on certain Riemannian manifolds, Mathematische Annalen, 207:4(1974), 269270. [20] H. Y. Zhang and S. Sra, Towards Riemannian Accelerated Gradient Methods, arXiv preprint arXiv:1806.02812, 2018. [21] X. Zhang, J. W. Zhu, Z. W. Wen, A. H. Zhou Gradient type optimization methods for electronic structure calculations, SIAM Journal on Scientific Computing, 36:3(2014), C265C289. [22] X. J. Zhu, A Riemannian conjugate gradient method for optimization on the Stiefel manifold, Computational Optimization and Applications, 67:1(2017), 73110. [23] R. Zimmermann, A matrixalgebraic algorithm for the Riemannian logarithm on the Stiefel manifold under the canonical metric, SIAM Journal on Matrix Analysis and Applications, 38:2(2017), 322342. 
[1]  Zhenyue Zhang , Yuyang Qiu , Keqin Du . CONDITIONS FOR OPTIMAL SOLUTIONS OF UNBALANCED PROCRUSTES PROBLEM ON STIEFEL MANIFOLD [J]. Journal of Computational Mathematics, 2007, 25(6): 661671. 
Viewed  
Full text 


Abstract 

