Wujie Liu, Xin Li
Wujie Liu, Xin Li. CAN A CUBIC SPLINE CURVE BE G^{3}[J]. Journal of Computational Mathematics, 2021, 39(2): 178191.
[1] R. Barnhill and R. F. Riesenfeld, Computer Aided Geometric Design, Academic Press, 1974. [2] L. Piegl and W. Tiller, The NURBS Book, SpringerVerlag, 1996. [3] C. de Boor, A Practical Guide to Splines, SpringerVerlag, 1978. [4] L. Schumaker, Spline Functions:Basic Theory, AddisonWiley, 1981. [5] C. de Boor, On calculating with Bsplines, Approx. Theory, 6:1(1972), 5062. [6] M. Cox, The numerical evaluation of Bsplines, Inst. Maths. Applies, 10:2(1972), 134149. [7] W. J. Gordon and R. F. Riesenfeld, Bspline curves and surfaces, Computer Aided Geometric Design 23:91(1974), 95126. [8] B. A. Barsky, The Betaspline:a local representation based on shape parameters and fundamental geometric measures, PhD thesis, University of Utah, 1981. [9] B. A. Barsky, Computer Graphics and Geometrie Modeling Using Betasplines, SpringerVerlag, 1988. [10] T. N. Goodman, Properties of βSplines, Journal of Approximation Theory, 44:2(1985), 132153. [11] N. A. Hadi, A. Ibrahim, F. Yahya and J. Md Ali, A Comparative Study on Cubic Bezier and BetaSpline Curves, Malaysian Journal of Industrial and Applied Mathematics, 29:1(2013), 55 64. [12] J. Manning, Continuity conditions for spline curves, The Computer Journal, 17:2(1974), 181186. [13] G. M. Nielson, Some piecewise polynomial alternatives to splines under tension, Computer Aided Geometric Design, 23:91(1974), 209235. [14] B. A. Barsky and T. DeRose, Geometric continuity of parametric curves, IEEE Computer Graphics and Applications, 9:6(1989), 6069. [15] W. Böhm, On the definition of geometric continuity, Comput. Aided. Des., 20:7(1988), 370372. [16] R.T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop., 34(1990), 736 752. [17] J. Kosinka and M. Lávička, Pythagorean Hodograph curves:A survey of recent advances, Journal for Geometry and Graphics, 18:1(2014), 2343. [18] R. Farouki, PythagoreanHodograph curves, SpringerVerlagr, 2008. [19] C. Blanc and C. Schlick, Xsplines:a spline model designed for the enduser, Proceedings of SIGGRAPH 95, (1995), 377386. [20] D. J. Hartley and C. J. Judd, Parametrization of Bézier type Bspline curves and surface, ComputerAided Design, 10:2(1978), 130134. [21] G. Farin, Visually C^{2} cubic splines, ComputerAided Design, 14:3(1982), 137139. [22] W. Böhm, Curvature continuous curves and surfaces, Computer Aider Geometric Dsign, 18:2(1986), 105106. [23] I. J. Schoenberg, Spline functions, convex curves and mechanical quadrature, Bull. Amer. Math. Soc. 64:6(1958), 352357. [24] L. Ramshaw, Blossoming:a connectthedots approach to splines, Digital Systems Research, 1987. [25] L. Ramshaw, Béziers and Bsplines as multiaffine maps, Theoretical Foundations of Computer Graphics and CAD, 40(1989), 757776. [26] L. Ramshaw. Blossoms are polar forms. Computer Aided Geometric Design, 6:4(1989), 323358. [27] T. W. Sederberg, J. Zheng, D. Sewell, and M. Sabin, Nonuniform recursive subdivision surfaces, Proceedings of SIGGRAPH 98, (1998), 387394. [28] W. Böhm, Generating the Bézier points of Bspline curves and surfaces, ComputerAided Design, 13:6(1981), 365366. [29] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, MorganKaufmann, 2001. [30] G. Farin, Curvature combs and curvature plots, ComputerAided Design, 80(2016), 68. [31] G. Farin and N. Sapidis, Curvature and the fairness of curves and surfaces, IEEE Comput Graph Appl, 9:2(1989), 5257. [32] H. Kang and X. Li, A New Method to Design Cubic PythagoreanHodograph Spline Curves with Control Polygon, Communications in Mathematics and Statistics, 2018. [33] Z. Yan, S. Schiller, G. Wilensky, N. Carr and S. Schaefer, κcurves:interpolation at local maximum curvature, ACM Transactions on Graphics, 36:4(2017), 129. [34] S. Robert, Interpolation with piecewise quadratic visually C^{2} Bézier polynomials, Computer Aided Geometric Design, 6:3(1989), 219233. [35] Y. Y. Feng and J. Kozak, On G^{2} continuous interpolatory composite quadratic Bézier curves, Journal of Computational and Applied Mathematics, 72:1(1996), 141159. [36] K.T. MiuraDai, D. Shibuya, R.U Gobithaasan and S. Usuki, Designing Logaesthetic splines with G^{2} continuity, ComputerAided Design and Applications, 10:6(2013), 10211032. 
[1]  Renzhong Feng, Renhong Wang . CLOSED SMOOTH SURFACE DEFINED FROM CUBIC TRIANGULAR SPLINES [J]. Journal of Computational Mathematics, 2005, 23(1): 67128. 
Viewed  
Full text 


Abstract 

