Previous Articles     Next Articles

CORNER-CUTTING SUBDIVISION SURFACES OF GENERAL DEGREES WITH PARAMETERS

Yufeng Tian, Maodong Pan   

  1. School of Mathematical Sciences, University of Science and Technology of China, Hefei 230026, China
  • Received:2018-12-16 Revised:2018-02-08 Published:2021-03-11

Yufeng Tian, Maodong Pan. CORNER-CUTTING SUBDIVISION SURFACES OF GENERAL DEGREES WITH PARAMETERS[J]. Journal of Computational Mathematics, 2020, 5(38): 732-747.

As a corner-cutting subdivision scheme, Lane-Riesefeld algorithm possesses the concise and unified form for generating uniform B-spline curves:vertex splitting plus repeated midpoint averaging. In this paper, we modify the second midpoint averaging step of the Lane-Riesefeld algorithm by introducing a parameter which controls the size of corner cutting, and generalize the strategy to arbitrary topological surfaces of general degree. By adjusting the free parameter, the proposed method can generate subdivision surfaces with flexible shapes. Experimental results demonstrate that our algorithm can produce subdivision surfaces with comparable or even better quality than the other state-of-the-art approaches by carefully choosing the free parameters.

CLC Number: 

[1] G. M. Chaikin, An algorithm for high-speed curve generation, Comput. Gr. Image Process., 3:4(1974), 346-349.
[2] J. M. Lane, R. F. Riesenfeld, A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Pattern Anal. Mach. Intell., 1(1980), 35-46.
[3] D. Zorin, P. Schröder, A unified framework for primal/dual quadrilateral subdivision schemes. Comput. Aided Geom. Des., 18:5(2001), 429-454.
[4] E. Catmull, J. Clark, Recursively generated b-spline surfaces on arbitrary topological meshes, Comput.-Aided Des., 10:6(1978), 350-355.
[5] D. Doo, M. Sabin, Behaviour of recursive division surfaces near extraordinary points, Comput.Aided Des., 10:6(1978), 356-360.
[6] G. Aumann, Subdivision of linear corner cutting curves, J. Geom. Graph., 1:2(1997), 91-103.
[7] L. Noakes, Nonlinear corner-cutting, Adv. Comput. Math., 8:3(1998), 165-177.
[8] E. Akleman, J. Chen, V. Srinivasan, F. Eryoldas, A new corner cutting scheme with tension and handle-face reconstruction, Int. J. Shape Model., 7:2(2001), 111-128.
[9] J. Claes, K. Beets, F. V. Reeth, A corner-cutting scheme for hexagonal subdivision surfaces, in Shape Modeling International Proceedings, IEEE, (2002), 13-20.
[10] S. S. Siddiqi, K. Rehan, Improved binary four point subdivision scheme and new corner cutting scheme, Comput. Math. with Appl., 59:8(2010), 2647-2657.
[11] S. S. Siddiqi, K. Rehan, K. Campus, A new method of corner cutting subdivision scheme, Appl. Math. Sci., 6:99(2012), 4931-4938.
[12] J. Tan, G. Tong, L. Zhang, J. Xie, Four point interpolatory-corner cutting subdivision, Appl. Math. Comput., 265(2015), 819-825.
[13] N. Dyn, D. Levin, J. A. Gregory, A 4-point interpolatory subdivision scheme for curve design, Comput. Aided Geom. Des., 4:4(1987), 257-268.
[14] S. Schaefer, E. Vouga, R. Goldman, Nonlinear subdivision througn nonlinear averaging, Comput. Aided Geom. Des., 25:3(2008), 162-180.
[15] G. Morin, J. Warren, H. Weimer, A subdivision scheme for surfaces of revolution, Comput. Aided Geom. Des., 18:5(2001), 483-502.
[16] Y. Tian, F. Chen, Catmull-Clark subdivision surfaces with parameters, J. Syst. Sci. Complex., 37:10(2017), 2070-2084.
[17] C. D. Boor, Cutting corners always works, Comput. Aided Geom. Des., 4:1-2(1987), 125-131.
[18] J. A. Gregory, R. Qu, Nonuniform corner cutting, Comput. Aided Geom. Des., 13:8(1996), 763772.
[19] C. D. Boor, Local corner cutting and the smoothness of the limiting curve. Comput. Aided Geom. Des., 7:5(1990), 389-397.
[20] M. Paluszny, H. Prautzsch, M. Schäfer, A geometric look at corner cutting, Comput. Aided Geom. Des., 14:5(1997), 421-447.
[21] L. Romani, Classifying uniform univariate refinement schemes and predicting their behaviour, Proc of the MINGLE., 134(2003).
[22] J. Warren, H. Weimer, Subdivision methods for geometric design:A constructive approach, Morgan Kaufmann, 2001.
[23] K. Karciauskas, J. Peters, Quad-net obstacle course, https://www.cise.ufl.edu/research/SurfLab/shapegellery.shtml, 2015.
[24] T. J. Cashman, U. H. Aufsdörfer, N. A. Dodgson, M. A. Sabin, NURBS with extraordinary points:high-degree non-uniform subdivision surfaces, ACM Trans. Graph., 28:3(2009), 1-9.
[25] T. J. Cashman, NURBS-compatible subdivision surfaces, Tech. rep., University of Cambridge, 2010.
[26] Q. Pan, G. Xu, G. Xu, Y. Zhang, Isogeometric analysis based on extended Catmull-Clark subdivision, Comput. Math. with Appl., 71:1(2016), 105-119.
[27] Q. Pan, G. Xu, G. Xu, Y. Zhang, Isogeometric analysis based on extended Loop's subdivision, J. Comput. Phys., 299(2015), 731-746.
[1] Sergio Amat, Juan Ruiz, Chi-Wang Shu. ON NEW STRATEGIES TO CONTROL THE ACCURACY OF WENO ALGORITHM CLOSE TO DISCONTINUITIES II: CELL AVERAGES AND MULTIRESOLUTION [J]. Journal of Computational Mathematics, 2020, 38(4): 661-682.
[2] Chang Yang, Meng Wu. A SINGULAR PARAMETERIZED FINITE VOLUME METHOD FOR THE ADVECTION-DIFFUSION EQUATION IN IRREGULAR GEOMETRIES [J]. Journal of Computational Mathematics, 2019, 37(5): 579-608.
[3] Xia Wang, Guoliang Xu. A FAST CLASSIFICATION METHOD FOR SINGLE-PARTICLE PROJECTIONS WITH A TRANSLATION AND ROTATION INVARIANT [J]. Journal of Computational Mathematics, 2013, 31(2): 137-153.
[4] Leonardo Fern, ez-Jambrina, Francisco P, erez-Arribas. DEVELOPABLE SURFACE PATCHES BOUNDED BY NURBS CURVES [J]. Journal of Computational Mathematics, 2020, 5(38): 715-731.
Viewed
Full text


Abstract