Previous Articles     Next Articles

THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS

Qilong Zhai1, Xiaozhe Hu2, Ran Zhang3   

  1. 1. Department of Mathematics, Peking University, Beijing 100871, China;
    2. Department of Mathematics, Tufts University, Medford, 02155, USA;
    3. Department of Mathematics, Jilin University, Changchun 130012, China
  • Received:2018-05-24 Revised:2018-10-12 Online:2020-07-15 Published:2020-07-15

Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS[J]. Journal of Computational Mathematics, 2020, 38(4): 606-623.

This paper proposes and analyzes a new weak Galerkin method for the eigenvalue problem by using the shifted-inverse power technique. A high order lower bound can be obtained at a relatively low cost via the proposed method. The error estimates for both eigenvalue and eigenfunction are provided and asymptotic lower bounds are shown as well under some conditions. Numerical examples are presented to validate the theoretical analysis.

CLC Number: 

[1] M. G. Armentano and R. G. Duran, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods., ETNA, Electron. Trans. Numer. Anal., 17(2004), 93-101.

[2] I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of numerical analysis, Vol. Ⅱ, North-Holland, Amsterdam, (1991), 641-787.

[3] I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52:186(1989), 275-297.

[4] H. Bi, H. Li and Y. Yang, An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem, Appl. Numer. Math., 105(2016), 64-81.

[5] Z. Cai, J. Mandel and S. McCormick, Multigrid methods for nearly singular linear equations and eigenvalue problems, SIAM J. Numer. Anal., 34:1(1997), 178-200.

[6] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors:conforming approximations, SIAM J. Numer. Anal., 55:5(2017), 2228-2254.

[7] H. Chen, Y. He, Y. Li and H. Xie, A multigrid method for eigenvalue problems based on shiftedinverse power technique, Eur. J. Math., 1(2015), 207-228.

[8] H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems, J. Comput. Phys., 322(2016), 747-759.

[9] K. A. Cliffe, E. J. C. Hall and P. Houston, Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows, SIAM J. Sci. Comput., 31:6(2010), 4607-4632.

[10] D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55:4(2013), 601-667.

[11] W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-gird method, SIAM J. Numer. Anal., 16:2(1979), 201-215.

[12] J. Hu, Y. Huang and Q. Lin, Lower bounds for eigenvalues of elliptic operators:By nonconforming finite element methods, J. Sci. Comput., 61:1(2014), 196-221.

[13] J. Hu, Y. Huang and R. Ma, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67:3(2016), 1181-1197.

[14] J. Hu, Y. Huang and Q. Shen, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58:3(2014), 574-591.

[15] J. Hu, Y. Huang and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131:2(2015), 273-302.

[16] X. Hu and X. Cheng, Corrigendum to:"Acceleration of a two-grid method for eigenvalue problems", Math. Comp., 84:296(2015), 2701-2704.

[17] X. Ji, J. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, J. Sci. Comput., 60:2(2014), 276-294.

[18] J. R. Kuttler, Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11:4(1974), 732-740.

[19] M. G. Larson, A posteriori and a priori error analysis for finite element approximations of selfadjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38:2(2000), 608-625.

[20] Q. H. Li and J. Wang, Weak Galerkin finite element methods for Parabolic equations, Numer. Methods Partial Differ. Equ., 29:6(2013), 2004-2024.

[21] Q. Lin, H. Huang and Z. Li, New expansions of numerical eigenvalues by nonconforming elements, Math. Comp., 77:264(2008), 2061-2084.

[22] Q. Lin and G. Xie, Acceleration of finite element method for eigenvalue problems, KeXue Tongbao, 26:8(1981), 449-452.

[23] Q. Lin and H. Xie, The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Math. Pract. Theory, 42:11(2012), 219-226.

[24] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comput., 84:291(2014), 71-88.

[25] Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp., 83:285(2014), 1-13.

[26] J. Liu, T. Xia and W. Jiang, A posteriori error estimates with computable upper bound for the nonconforming finite element approximation of the eigenvalue problems, Math. Probl. Eng., 2014(2014), 1-9.

[27] T. Lü, C. B. Liem and T. M. Shih, A fourth order finite difference approximation to the eigenvalues of a clamped plate, J. Comput. Math., 6:3(1988), 267-271.

[28] F. S. Luo, Q. Lin and H. H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem:By combining conforming and nonconforming finite element methods, Sci. China Math., 55:5(2012), 1069-1082.

[29] M. S. Min and D. Gottlieb, Domain decomposition spectral approximations for an eigenvalue problem with a piecewise constant coefficient, SIAM J. Numer. Anal., 43:2(2006), 502-520.

[30] L. Mu, J. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273(2014), 327-342.

[31] L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30:3(2014), 1003-1029.

[32] L. Mu, J. Wang, X. Ye and S. Zhang, A C0-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59:2(2014), 473-495.

[33] L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65:1(2015), 363-386.

[34] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241:1(2013), 103-115.

[35] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83:289(2014), 2101-2126.

[36] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42:1(2016), 155-174.

[37] X. Wang, Q. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307(2016), 13-24.

[38] H. Xie, A multigrid method for eigenvalue problem, J. Comput. Phys., 274(2014), 550-561.

[39] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15:1(1994), 231-237.

[40] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33:5(1996), 1759-1777.

[41] J. Xu, S. McCormick and J. Ruge, Multigrid methods for differential eigenproblems, SIAM J. Sci. Stat. Comput., 4:2(1983), 244-260.

[42] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70:233(1999), 17-26.

[43] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., 69:231(2000), 881-909.

[44] Y. Yang, Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems, J. Comput. Math., 27:6(2009), 748-763.

[45] Y. Yang and H. Bi, Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49:4(2011), 1602-1624.

[46] Y. Yang, H. Bi, J. Han and Y. Yu, The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37:6(2015), A2583-A2606.

[47] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 26:1(2019), 160-191.

[48] Q. Zhai, R. Zhang, Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes, Discrete & Continuous Dynamical Systems - B, 24:1(2019), 403- 413.

[49] Q. Zhai, R. Zhang and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19:5(2016), 1409-1434.

[50] Q. Zhai, R. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58:11(2015), 2455-2472.

[51] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64:2(2015), 559-585.

[52] X. D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl., 376(2004), 207-213.
[1] Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han. NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(5): 682-692.
[2] Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760.
[3] Ruishu Wang, Ran Zhang. A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE LINEAR ELASTICITY PROBLEM IN MIXED FORM [J]. Journal of Computational Mathematics, 2018, 36(4): 469-491.
[4] Yingxia Xi, Xia Ji. RECURSIVE INTEGRAL METHOD FOR THE NONLINEAR NON-SELFADJOINT TRANSMISSION EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(6): 828-838.
[5] Xiaole Han, Hehu Xie, Fei Xu. A CASCADIC MULTIGRID METHOD FOR EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(1): 74-90.
[6] K.C. Chang, Sihong Shao, Dong Zhang. THE 1-LAPLACIAN CHEEGER CUT: THEORY AND ALGORITHMS [J]. Journal of Computational Mathematics, 2015, 33(5): 443-467.
[7] Youai Li. CONVERGENCE ANALYSIS FOR THE ITERATED DEFECT CORRECTION SCHEME OF FINITE ELEMENT METHODS ON RECTANGLE GRIDS [J]. Journal of Computational Mathematics, 2015, 33(3): 297-306.
[8] John C. Urschel, Jinchao Xu, Xiaozhe Hu, Ludmil T. Zikatanov. A CASCADIC MULTIGRID ALGORITHM FOR COMPUTING THE FIEDLER VECTOR OF GRAPH LAPLACIANS [J]. Journal of Computational Mathematics, 2015, 33(2): 209-226.
[9] Darko Volkov. A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE [J]. Journal of Computational Mathematics, 2011, 29(5): 543-573.
[10] Hua Dai, Zhong-Zhi Bai. ON SMOOTH LU DECOMPOSITIONS WITH APPLICATIONS TO SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(6): 745-766.
[11] Xin Huang, Zhaojun Bai, Yangfeng Su . NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2010, 28(2): 218-234.
[12] Yidu Yang. TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR
EIGENVALUE PROBLEMS
[J]. Journal of Computational Mathematics, 2009, 27(6): 748-763.
[13] Zhongzhi Bai, Yonghua Gao . MODIFIED BERNOULLI ITERATION METHODS FOR QUADRATIC MATRIXEQUATION [J]. Journal of Computational Mathematics, 2007, 25(5): 498-511.
[14] Haixia Liang, Erxiong Jiang . AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES [J]. Journal of Computational Mathematics, 2007, 25(5): 620-630.
[15] Jianhua Yuan. AN ADAPTIVE INVERSE ITERATION FEM FOR THE INHOMOGENEOUS DIELECTRIC WAVEGUIDES [J]. Journal of Computational Mathematics, 2007, 25(2): 169-184.
Viewed
Full text


Abstract