Previous Articles Next Articles
Qilong Zhai1, Xiaozhe Hu2, Ran Zhang3
[1] M. G. Armentano and R. G. Duran, Asymptotic lower bounds for eigenvalues by nonconforming finite element methods., ETNA, Electron. Trans. Numer. Anal., 17(2004), 93-101.[2] I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of numerical analysis, Vol. Ⅱ, North-Holland, Amsterdam, (1991), 641-787.[3] I. Babuska and J. E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems, Math. Comp., 52:186(1989), 275-297.[4] H. Bi, H. Li and Y. Yang, An adaptive algorithm based on the shifted inverse iteration for the Steklov eigenvalue problem, Appl. Numer. Math., 105(2016), 64-81.[5] Z. Cai, J. Mandel and S. McCormick, Multigrid methods for nearly singular linear equations and eigenvalue problems, SIAM J. Numer. Anal., 34:1(1997), 178-200.[6] E. Cancès, G. Dusson, Y. Maday, B. Stamm and M. Vohralík, Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors:conforming approximations, SIAM J. Numer. Anal., 55:5(2017), 2228-2254.[7] H. Chen, Y. He, Y. Li and H. Xie, A multigrid method for eigenvalue problems based on shiftedinverse power technique, Eur. J. Math., 1(2015), 207-228.[8] H. Chen, H. Xie and F. Xu, A full multigrid method for eigenvalue problems, J. Comput. Phys., 322(2016), 747-759.[9] K. A. Cliffe, E. J. C. Hall and P. Houston, Adaptive discontinuous Galerkin methods for eigenvalue problems arising in incompressible fluid flows, SIAM J. Sci. Comput., 31:6(2010), 4607-4632.[10] D. S. Grebenkov and B.-T. Nguyen, Geometrical structure of Laplacian eigenfunctions, SIAM Rev., 55:4(2013), 601-667.[11] W. Hackbusch, On the computation of approximate eigenvalues and eigenfunctions of elliptic operators by means of a multi-gird method, SIAM J. Numer. Anal., 16:2(1979), 201-215.[12] J. Hu, Y. Huang and Q. Lin, Lower bounds for eigenvalues of elliptic operators:By nonconforming finite element methods, J. Sci. Comput., 61:1(2014), 196-221.[13] J. Hu, Y. Huang and R. Ma, Guaranteed lower bounds for eigenvalues of elliptic operators, J. Sci. Comput., 67:3(2016), 1181-1197.[14] J. Hu, Y. Huang and Q. Shen, The lower/upper bound property of approximate eigenvalues by nonconforming finite element methods for elliptic operators, J. Sci. Comput., 58:3(2014), 574-591.[15] J. Hu, Y. Huang and Q. Shen, Constructing both lower and upper bounds for the eigenvalues of elliptic operators by nonconforming finite element methods, Numer. Math., 131:2(2015), 273-302.[16] X. Hu and X. Cheng, Corrigendum to:"Acceleration of a two-grid method for eigenvalue problems", Math. Comp., 84:296(2015), 2701-2704.[17] X. Ji, J. Sun and H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, J. Sci. Comput., 60:2(2014), 276-294.[18] J. R. Kuttler, Direct methods for computing eigenvalues of the finite-difference Laplacian, SIAM J. Numer. Anal., 11:4(1974), 732-740.[19] M. G. Larson, A posteriori and a priori error analysis for finite element approximations of selfadjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38:2(2000), 608-625.[20] Q. H. Li and J. Wang, Weak Galerkin finite element methods for Parabolic equations, Numer. Methods Partial Differ. Equ., 29:6(2013), 2004-2024.[21] Q. Lin, H. Huang and Z. Li, New expansions of numerical eigenvalues by nonconforming elements, Math. Comp., 77:264(2008), 2061-2084.[22] Q. Lin and G. Xie, Acceleration of finite element method for eigenvalue problems, KeXue Tongbao, 26:8(1981), 449-452.[23] Q. Lin and H. Xie, The asymptotic lower bounds of eigenvalue problems by nonconforming finite element methods, Math. Pract. Theory, 42:11(2012), 219-226.[24] Q. Lin and H. Xie, A multi-level correction scheme for eigenvalue problems, Math. Comput., 84:291(2014), 71-88.[25] Q. Lin, H. Xie and J. Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp., 83:285(2014), 1-13.[26] J. Liu, T. Xia and W. Jiang, A posteriori error estimates with computable upper bound for the nonconforming finite element approximation of the eigenvalue problems, Math. Probl. Eng., 2014(2014), 1-9.[27] T. Lü, C. B. Liem and T. M. Shih, A fourth order finite difference approximation to the eigenvalues of a clamped plate, J. Comput. Math., 6:3(1988), 267-271.[28] F. S. Luo, Q. Lin and H. H. Xie, Computing the lower and upper bounds of Laplace eigenvalue problem:By combining conforming and nonconforming finite element methods, Sci. China Math., 55:5(2012), 1069-1082.[29] M. S. Min and D. Gottlieb, Domain decomposition spectral approximations for an eigenvalue problem with a piecewise constant coefficient, SIAM J. Numer. Anal., 43:2(2006), 502-520.[30] L. Mu, J. Wang and X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273(2014), 327-342.[31] L. Mu, J. Wang and X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30:3(2014), 1003-1029.[32] L. Mu, J. Wang, X. Ye and S. Zhang, A C0-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59:2(2014), 473-495.[33] L. Mu, J. Wang, X. Ye and S. Zhang, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65:1(2015), 363-386.[34] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241:1(2013), 103-115.[35] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83:289(2014), 2101-2126.[36] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math., 42:1(2016), 155-174.[37] X. Wang, Q. Zhai and R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307(2016), 13-24.[38] H. Xie, A multigrid method for eigenvalue problem, J. Comput. Phys., 274(2014), 550-561.[39] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15:1(1994), 231-237.[40] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33:5(1996), 1759-1777.[41] J. Xu, S. McCormick and J. Ruge, Multigrid methods for differential eigenproblems, SIAM J. Sci. Stat. Comput., 4:2(1983), 244-260.[42] J. Xu and A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comp., 70:233(1999), 17-26.[43] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., 69:231(2000), 881-909.[44] Y. Yang, Two-grid discretization schemes of the nonconforming FEM for eigenvalue problems, J. Comput. Math., 27:6(2009), 748-763.[45] Y. Yang and H. Bi, Two-grid finite element discretization schemes based on shifted-inverse power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49:4(2011), 1602-1624.[46] Y. Yang, H. Bi, J. Han and Y. Yu, The shifted-inverse iteration based on the multigrid discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37:6(2015), A2583-A2606.[47] Q. Zhai, H. Xie, R. Zhang and Z. Zhang, The weak Galerkin method for elliptic eigenvalue problems, Commun. Comput. Phys., 26:1(2019), 160-191.[48] Q. Zhai, R. Zhang, Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes, Discrete & Continuous Dynamical Systems - B, 24:1(2019), 403- 413.[49] Q. Zhai, R. Zhang and L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19:5(2016), 1409-1434.[50] Q. Zhai, R. Zhang and X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58:11(2015), 2455-2472.[51] R. Zhang and Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64:2(2015), 559-585.[52] X. D. Zhang, Two sharp upper bounds for the Laplacian eigenvalues, Linear Algebra Appl., 376(2004), 207-213. |
[1] | Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han. NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(5): 682-692. |
[2] | Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760. |
[3] | Ruishu Wang, Ran Zhang. A WEAK GALERKIN FINITE ELEMENT METHOD FOR THE LINEAR ELASTICITY PROBLEM IN MIXED FORM [J]. Journal of Computational Mathematics, 2018, 36(4): 469-491. |
[4] | Yingxia Xi, Xia Ji. RECURSIVE INTEGRAL METHOD FOR THE NONLINEAR NON-SELFADJOINT TRANSMISSION EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(6): 828-838. |
[5] | Xiaole Han, Hehu Xie, Fei Xu. A CASCADIC MULTIGRID METHOD FOR EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(1): 74-90. |
[6] | K.C. Chang, Sihong Shao, Dong Zhang. THE 1-LAPLACIAN CHEEGER CUT: THEORY AND ALGORITHMS [J]. Journal of Computational Mathematics, 2015, 33(5): 443-467. |
[7] | Youai Li. CONVERGENCE ANALYSIS FOR THE ITERATED DEFECT CORRECTION SCHEME OF FINITE ELEMENT METHODS ON RECTANGLE GRIDS [J]. Journal of Computational Mathematics, 2015, 33(3): 297-306. |
[8] | John C. Urschel, Jinchao Xu, Xiaozhe Hu, Ludmil T. Zikatanov. A CASCADIC MULTIGRID ALGORITHM FOR COMPUTING THE FIEDLER VECTOR OF GRAPH LAPLACIANS [J]. Journal of Computational Mathematics, 2015, 33(2): 209-226. |
[9] | Darko Volkov. A NUMERICAL BOUNDARY EIGENVALUE PROBLEM FOR ELASTIC CRACKS IN FREE AND HALF SPACE [J]. Journal of Computational Mathematics, 2011, 29(5): 543-573. |
[10] | Hua Dai, Zhong-Zhi Bai. ON SMOOTH LU DECOMPOSITIONS WITH APPLICATIONS TO SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(6): 745-766. |
[11] | Xin Huang, Zhaojun Bai, Yangfeng Su . NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2010, 28(2): 218-234. |
[12] |
Yidu Yang.
TWO-GRID DISCRETIZATION SCHEMES OF THE NONCONFORMING FEM FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2009, 27(6): 748-763. |
[13] | Zhongzhi Bai, Yonghua Gao . MODIFIED BERNOULLI ITERATION METHODS FOR QUADRATIC MATRIXEQUATION [J]. Journal of Computational Mathematics, 2007, 25(5): 498-511. |
[14] | Haixia Liang, Erxiong Jiang . AN INVERSE EIGENVALUE PROBLEM FOR JACOBI MATRICES [J]. Journal of Computational Mathematics, 2007, 25(5): 620-630. |
[15] | Jianhua Yuan. AN ADAPTIVE INVERSE ITERATION FEM FOR THE INHOMOGENEOUS DIELECTRIC WAVEGUIDES [J]. Journal of Computational Mathematics, 2007, 25(2): 169-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||