Previous Articles Next Articles
Mohammad Tanzil Hasan, Chuanju Xu
[1] G.B. Whitman, Linear and Nonlinear Waves, J. Wiley, Newyork, 1974.[2] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive sysytems, Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci., 272:1220(1972), 47-78.[3] L.A. Medeiros and G.P. Menzala, Existence and uniqueness for peridoc boundary solutions of the Benjamin-Bona-Mahony equation, SIAM Journal on Mathematical Analysis, 8:5(1977), 792-799.[4] D.Dutykh and F. Dias, Viscous potential free-surface flows in a fluid layer of finite depth, Comptes Rendus Mathematique, 345:2(2007), 113-118.[5] P.L.F. Liu and A. Orfila, Viscous effect on transient long-wave propagation, Fluid Mech., 520:1(2004), 83-92.[6] J.L. Bona, M. Chen and J.C. Saut, Boussinesq equations and other systems for small amplitude long waves in nonlinear dispersive media I:Derivation and the linear theory, J. Nonlinear Sci. 12(2002), 283-318.[7] T. Kakutani and K. Matsuuchi, Effect of viscosity on long gravity waves, J. Phys. Soc. Jpn., 39(1975), 237-246.[8] M. Chen, S. Dumont, L. Dupaigne and O. Goubet, Decay of solutions to a water wave model with a nonlocal viscous dispersive term, Discrete cont. Dyn. Syst. -Ser. A, 27:4(2010), 1473-1492.[9] E. Ott and R.N. Sudan, Damping of solitary waves, Phys. Fluids, 13(1970), 1432-1434.[10] D. Dutkyh, Visco-potential free-surface flows and long wave modelling, Eur. J. Mech. - B/Fluids, Elsevier, 28:3(2009), 430-443.[11] C.J. Amic, J.L. Bona and M.E. Schonbek, Decay of solutions of some nonlinear wave equations, J. Differ. Equ., 81:1(1989), 1-49.[12] J.L. Bona, K.S. Promislow and C.E. Wayne, High order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations, Nonlinearity, 8:6(1995), 1179.[13] A. Dogan, Numerical solution of RLW equation using linear finite elements within Galerkins method, Appl. Math. Model., 26(2002), 771-783.[14] K. Al-Khaled, S. Momani and A. Alawneh, Approximate wave solutions for generalized Benjamin -Bona-Mahony-Burgers equations, Appl. Math. Comput., 171(2005), 281-292.[15] I. Dag, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic quadratic B-splines, J. Comput. Appl. Math., 190:1(2006), 532-547.[16] K. Omrani, Convergence of fully discrete Galerkin approximations Benjamin -Bona-Mahony (BBM) equation, Appl. Math. Comput., 180(2006), 614-621.[17] T. Achouri, N. Khiari and K. Omrani, On the convergence of diiference schemes for the Benjamin -Bona-Mahony (BBM) equation, Appl. Math. Comput., 182(2006), 999-1005.[18] K. Omrani and M.Ayadi, Finite difference discretization of the Benjamin-Bona-Mahony-Burgers equation, Nonlinear Methods for Partial Differential Equations, 24:1(2008), 239-248.[19] M.T. Hasan and C. Xu, The stability and convergence of time-stepping/spectral methods with asymptotic behaviour for the Rosenau-Burgers equation, Appl. Anal., doi:10.1080/00036811.2018. 1553034.[20] O. Goubet and G. Warnault, Decay of solutions to a linear viscous asymptotic model for water waves, Chin. Ann. Math. -Ser B, 31:6(2010), 841-854.[21] S. Dumont and J.B. Duval, Numerical investigation of the decay rate of solutions to models for water waves with nonlocal viscosity, Int. J. Number Anal. Model., 10:2(2013), 333-349.[22] J. Zhang and C. Xu, Finite difference/spectral approximations to a water wave model with a nonlocal viscous term, Appl. Math. Model., 38(2014), 4912-4925.[23] G.I. Jennings, Efficient numerical methods for water wave propagation in unbounded domains (Ph.D. thesis), Applied and Interdisciplinary Mathematics, The University of Michigan, 2012.[24] I. Manoubi, Theoritical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative, Discrete cont. Dyn. Syst. -Ser. B, 19:9(2014), 2837-2863.[25] Z. Mao and J. Shen, A semi-implicit spectral deferred correction method for two water wave models with nonlocal viscous term and numerical study of their decay rates, Sci. China Math., 8(2015), 1153-1168.[26] C. Li and S. Zhaob, Efficient numerical schemes for fractional water wave models, Comput. Math. Appl., 71(2016), 238-254.[27] J. Cao, C. Xu and Z. Wang, A high order finite difference/spectral approximations to the time fractional diffusion equations, Advanced Materials Research, 875-877(2014), 781-785.[28] I. Podlubny, Fractional Differential Equations, Academic press, Sun Diego, 1999.[29] C. Lv and C. Xu, Error analysis of a high order method for time fractional diffusion equations, SIAM J. Sci. Comput., 38:5(2016), A2699-A2724.[30] A. Quarteroni and A. Valli, Numerical Approximation of the Partial Differential Equations, Springer-Verlag, Berlin, 1994. |
[1] | Christiane Helzel, Maximilian Schneiders. NUMERICAL APPROXIMATION OF THE SMOLUCHOWSKI EQUATION USING RADIAL BASIS FUNCTIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 176-194. |
[2] | Yubo Yang, Heping Ma. A LINEAR IMPLICIT L1LEGENDRE GALERKIN CHEBYSHEV COLLOCATION METHOD FOR GENERALIZED TIME-AND SPACE-FRACTIONAL BURGERS EQUATION [J]. Journal of Computational Mathematics, 2019, 37(5): 629-644. |
[3] | Tingchun Wang, Xiaofei Zhao, Mao Peng, Peng Wang. EFFICIENT AND ACCURATE NUMERICAL METHODS FOR LONG-WAVE SHORT-WAVE INTERACTION EQUATIONS IN THE SEMICLASSICAL LIMIT REGIME [J]. Journal of Computational Mathematics, 2019, 37(5): 645-665. |
[4] | Yuze Zhang, Yushun Wang, Yanhong Yang. THE STRUCTURE-PRESERVING METHODS FOR THE DEGASPERIS-PROCESI EQUATION [J]. Journal of Computational Mathematics, 2019, 37(4): 475-487. |
[5] | Xiaoli Li, Hongxing Rui. BLOCK-CENTERED FINITE DIFFERENCE METHODS FOR NON-FICKIAN FLOW IN POROUS MEDIA [J]. Journal of Computational Mathematics, 2018, 36(4): 492-516. |
[6] | Christoph Reisinger, Zhenru Wang. ANALYSIS OF MULTI-INDEX MONTE CARLO ESTIMATORS FOR A ZAKAI SPDE [J]. Journal of Computational Mathematics, 2018, 36(2): 202-236. |
[7] | Carlos Jerez-Hanckes, Serge Nicaise, Carolina Urzúa-Torres. FAST SPECTRAL GALERKIN METHOD FOR LOGARITHMIC SINGULAR EQUATIONS ON A SEGMENT [J]. Journal of Computational Mathematics, 2018, 36(1): 128-158. |
[8] | Xiaolu Su, Xiufang Feng, Zhilin Li. FOURTH-ORDER COMPACT SCHEMES FOR HELMHOLTZ EQUATIONS WITH PIECEWISE WAVE NUMBERS IN THE POLAR COORDINATES [J]. Journal of Computational Mathematics, 2016, 34(5): 499-510. |
[9] | Fuqiang Lu, Zhiyao Song, Zhuo Zhang. A COMPACT FOURTH-ORDER FINITE DIFFERENCE SCHEME FOR THE IMPROVED BOUSSINESQ EQUATION WITH DAMPING TERMS [J]. Journal of Computational Mathematics, 2016, 34(5): 462-478. |
[10] | Benyu Guo, Hongli Jia. A NEW PSEUDOSPECTRAL METHOD ON QUADRILATERALS [J]. Journal of Computational Mathematics, 2016, 34(4): 365-384. |
[11] | Junjie Wang. MULTI-SYMPLECTIC FOURIER PSEUDOSPECTRAL METHOD FOR A HIGHER ORDER WAVE EQUATION OF KDV TYPE [J]. Journal of Computational Mathematics, 2015, 33(4): 379-395. |
[12] | Lunji Song, Jing Zhang, Li-Lian Wang. A MULTI-DOMAIN SPECTRAL IPDG METHOD FOR HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER [J]. Journal of Computational Mathematics, 2013, 31(2): 107-136. |
[13] | Tianjun Wang, Benyu Guo, Wei Li. SPECTRAL METHOD FOR MIXED INHOMOGENEOUS BOUNDARY VALUE PROBLEMS IN THREE DIMENSIONS [J]. Journal of Computational Mathematics, 2012, 30(6): 579-600. |
[14] | Meiling Zhao, Zhonghua Qiao, Tao Tang. A FAST HIGH ORDER METHOD FOR ELECTROMAGNETIC SCATTERING BY LARGE OPEN CAVITIES [J]. Journal of Computational Mathematics, 2011, 29(3): 287-304. |
[15] | Xiufang Feng, Zhilin Li, Zhonghua Qiao. HIGH ORDER COMPACT FINITE DIFFERENCE SCHEMES FOR THE HELMHOLTZ EQUATION WITH DISCONTINUOUS COEFFICIENTS [J]. Journal of Computational Mathematics, 2011, 29(3): 324-340. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||