Gerard Awanou1, Hengguang Li2, Eric Malitz3
[1] G. Awanou, Pseudo transient continuation and time marching methods for Monge-Ampère type equations, Adv. Comput. Math., 41:4(2015), 907-935.[2] G. Awanou, Standard finite elements for the numerical resolution of the elliptic Monge-Ampère equation:Aleksandrov solutions, ESAIM Math. Model. Numer. Anal., 51:2(2017), 707-725.[3] G. Awanou and H. Li, Error analysis of a mixed finite element method for the Monge-Ampère equation, Int. J. Num. Analysis and Modeling, 11(2014), 745-761.[4] J.H. Bramble, J.E. Pasciak and A. H. Schatz, The construction of preconditioners for elliptic problems by substructuring. I, Math. Comp., 47:175(1986), 103-134.[5] S.C. Brenner, T. Gudi, M. Neilan and L.Y. Sung, C0 penalty methods for the fully nonlinear Monge-Ampère equation, Math. Comp., 80:276(2011), 1979-1995.[6] S.C. Brenner, M. Neilan, A. Reiser and L.Y. Sung, A C0 interior penalty method for a von Kármán plate, Numer. Math., 135:3(2017), 803-832.[7] S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics, Springer, New York, third edition, 2008.[8] X. Feng, R. Glowinski and M. Neilan, Recent Developments in Numerical Methods for Fully Nonlinear Second Order Partial Differential Equations, SIAM Rev., 55:2(2013), 205-267.[9] E. Malitz, Two-grid discretization for interior penalty and mixed finite element approximations of the elliptic Monge-Ampère equation, Ph.D. Dissertation, University of Illinois at Chicago. USA, 2019.[10] M. Neilan, Quadratic finite element approximations of the Monge-Ampère equation, J. Sci. Comput., 54:1(2013), 200-226.[11] M. Neilan, Finite element methods for fully nonlinear second order PDEs based on a discrete Hessian with applications to the Monge-Ampère equation, J. Comput. Appl. Math., 263(2014), 351-369.[12] V. Thomée, J. Xu and N.Y. Zhang, Superconvergence of the gradient in piecewise linear finiteelement approximation to a parabolic problem, SIAM J. Numer. Anal., 26:3(1989), 553-573.[13] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33:5(1996), 1759-1777. |
[1] | Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565-579. |
[2] | H. Laeli Dastjerdi, M. Nili Ahmadabadi. IMPLICITY LINEAR COLLOCATION METHOD AND ITERATED IMPLICITY LINEAR COLLOCATION METHOD FOR THE NUMERICAL SOLUTION OF HAMMERSTEIN FREDHOLM INTEGRAL EQUATIONS ON 2D IRREGULAR DOMAINS [J]. Journal of Computational Mathematics, 2020, 38(4): 624-637. |
[3] | Meng Huang, Zhiqiang Xu. SOLVING SYSTEMS OF QUADRATIC EQUATIONS VIA EXPONENTIAL-TYPE GRADIENT DESCENT ALGORITHM [J]. Journal of Computational Mathematics, 2020, 38(4): 638-660. |
[4] | Sergio Amat, Juan Ruiz, Chi-Wang Shu. ON NEW STRATEGIES TO CONTROL THE ACCURACY OF WENO ALGORITHM CLOSE TO DISCONTINUITIES II: CELL AVERAGES AND MULTIRESOLUTION [J]. Journal of Computational Mathematics, 2020, 38(4): 661-682. |
[5] | Mohammad Tanzil Hasan, Chuanju Xu. HIGH ORDER FINITE DIFFERENCE/SPECTRAL METHODS TO A WATER WAVE MODEL WITH NONLOCAL VISCOSITY [J]. Journal of Computational Mathematics, 2020, 38(4): 580-605. |
[6] | Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623. |
[7] | Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502-527. |
[8] | Chunmei Xie, Minfu Feng. A NEW STABILIZED FINITE ELEMENT METHOD FOR SOLVING TRANSIENT NAVIER-STOKES EQUATIONS WITH HIGH REYNOLDS NUMBER [J]. Journal of Computational Mathematics, 2020, 38(3): 395-416. |
[9] | Leiwu Zhang. A STOCHASTIC MOVING BALLS APPROXIMATION METHOD OVER A SMOOTH INEQUALITY CONSTRAINT [J]. Journal of Computational Mathematics, 2020, 38(3): 528-546. |
[10] | Weichao Kong, Jianjun Wang, Wendong Wang, Feng Zhang. ENHANCED BLOCK-SPARSE SIGNAL RECOVERY PERFORMANCE VIA TRUNCATED ?2/?1-2 MINIMIZATION [J]. Journal of Computational Mathematics, 2020, 38(3): 437-451. |
[11] | Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468. |
[12] | Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486. |
[13] | Liying Zhang, Jing Wang, Weien Zhou, Landong Liu, Li Zhang. CONVERGENCE ANALYSIS OF PARAREAL ALGORITHM BASED ON MILSTEIN SCHEME FOR STOCHASTIC DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(3): 487-501. |
[14] | Yijun Zhong, Chongjun Li. PIECEWISE SPARSE RECOVERY VIA PIECEWISE INVERSE SCALE SPACE ALGORITHM WITH DELETION RULE [J]. Journal of Computational Mathematics, 2020, 38(2): 375-394. |
[15] | Maohua Ran, Chengjian Zhang. A HIGH-ORDER ACCURACY METHOD FOR SOLVING THE FRACTIONAL DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2020, 38(2): 239-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||