Previous Articles     Next Articles

SATURATION AND RELIABLE HIERARCHICAL A POSTERIORI MORLEY FINITE ELEMENT ERROR CONTROL

Carsten Carstensen1, Dietmar Gallistl2, Yunqing Huang3   

  1. 1. Humboldt-Universität zu Berlin, Institut für Mathematik, Unter den Linden 6, 10099 Berlin, Germany;
    2. Department of Applied Mathematics, University of Twente, P. O. Box 217, 7500 AE Enschede The Netherlands;
    3. Institute for Computational and Applied Mathematics and Hunan Key Laboratory for Computation & Simulation in Science & Engineering, Xiangtan University, Xiangtan 411105, China
  • Received:2016-02-22 Revised:2017-02-09 Online:2018-11-15 Published:2018-11-15
  • Supported by:

    This work was supported by the Chinesisch-Deutsches Zentrum through project GZ578. The work was initiated while the first two authors enjoyed their pleasant visit to the Hunan Key Laboratory for Computation & Simulation in Science & Engineering of the Xiangtan University in China in 2013. The revision was accomplished during a research stay at the Hausdorff Institute for Mathematics (Bonn) in 2017. The kind hospitality is thankfully acknowledged. The third author was also supported by NSFC key project 91430213.

Carsten Carstensen, Dietmar Gallistl, Yunqing Huang. SATURATION AND RELIABLE HIERARCHICAL A POSTERIORI MORLEY FINITE ELEMENT ERROR CONTROL[J]. Journal of Computational Mathematics, 2018, 36(6): 833-844.

This paper proves the saturation assumption for the nonconforming Morley finite element discretization of the biharmonic equation. This asserts that the error of the Morley approximation under uniform refinement is strictly reduced by a contraction factor smaller than one up to explicit higher-order data approximation terms. The refinement has at least to bisect any edge such as red refinement or 3-bisections on any triangle.
This justifies a hierarchical error estimator for the Morley finite element method, which simply compares the discrete solutions of one mesh and its red-refinement. The related adaptive mesh-refining strategy performs optimally in numerical experiments. A remark for Crouzeix-Raviart nonconforming finite element error control is included.

CLC Number: 

[1] L. Beirão da Veiga, J. Niiranen, and R. Stenberg, A posteriori error estimates for the Morley plate bending element, Numer. Math. 106:2(2007), 165-179.

[2] Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97:2(2004), 219-268.

[3] H. Blum and R. Rannacher, On the boundary value problem of the biharmonic operator on domains with angular corners, Math. Methods Appl. Sci. 2:4(1980), 556-581.

[4] C. Carstensen and D. Gallistl, Guaranteed lower eigenvalue bounds for the biharmonic equation, Numer. Math. 126:1(2014), 33-51.

[5] C. Carstensen, D. Gallistl, and J. Gedicke, Justification of the saturation assumption, Numer. Math. 134(2016), 1-25.

[6] C. Carstensen, D. Gallistl, and J. Hu, A discrete Helmholtz decomposition with Morley finite element functions and the optimality of adaptive finite element schemes, Comput. Math. Appl. 68:12(2014), 2167-2181.

[7] C. Carstensen, J. Gedicke, V. Mehrmann, and A. Mi edlar, An adaptive finite element method' with asymptotic saturation for eigenvalue problems, Numer. Math. 128:4(2014), 615-634.

[8] C. Carstensen and R.H.W. Hoppe, Convergence analysis of an adaptive nonconforming finite element method, Numer. Math. 103:2(2006), 251-266.

[9] C.M. Chen and Y.Q. Huang, High Accuracy Theory of Finite Element Methods, Hunan science and technology press, Changsha, 1995(in Chinese).

[10] S.C. Chen, M.F. Liu, and Z.H. Qiao, An anisotropic nonconforming element for fourth order elliptic singular perturbation problem, Int. J. Numer. Anal. Model. 7:4(2010), 766-784.

[11] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal. 33(1996), 1106-1124.

[12] Willy Dörfler and Ricardo H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math. 91:1(2002), 1-12.

[13] D. Gallistl, Morley finite element method for the eigenvalues of the biharmonic operator, IMA J. Numer. Anal. 35:4(2015), 1779-1811.

[14] P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman, Boston, MA, 1985.

[15] P. Grisvard, Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées[Research in Applied Mathematics], vol. 22, Masson, Paris, 1992.

[16] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems, Math. Comp. 79:272(2010), 2169-2189.

[17] J. Hu, Y.Q. Huang, and Qun Lin, Lower bounds for eigenvalues of elliptic operators:by nonconforming finite element methods, J. Sci. Comput. 61:1(2014), 196-221.

[18] J. Hu and R. Ma, Superconvergence of both the Crouzeix-Raviart and Morley elements, Numer. Math. 132:3(2016), 491-509.

[19] J. Hu and Z.C. Shi, A new a posteriori error estimate for the Morley element, Numer. Math. 112:1(2009), 25-40.

[20] J. Hu, Z.C. Shi, and J.C. Xu, Convergence and optimality of the adaptive Morley element method, Numer. Math. 121:4(2012), 731-752.

[21] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem, Rev. Française Automat. Informat. Recherche Operationnelle 9:R-1(1975), 9-53.

[22] Q. Lin, H.H. Xie, and Jinchao Xu, Lower bounds of the discretization error for piecewise polynomials, Math. Comp. 83:285(2014), 1-13.

[23] L. S. D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aeronaut. Quart. 19(1968), 149-169.

[24] T. K. Nilssen, X.C. Tai, and R. Winther, A robust nonconforming H 2-element, Math. Comp. 70:234(2001), 489-505.

[25] R. Rannacher, Nonconforming finite element methods for eigenvalue problems in linear plate theory, Numer. Math. 33:1(1979), 23-42.

[26] D.Y. Shi and P.L. Xie, Morley type non-C0 nonconforming rectangular plate finite elements on anisotropic meshes, Numer. Methods Partial Differential Equations 26:3(2010), 723-744.

[27] Z.C. Shi, Error estimates for the Morley element, Math. Numer. Sinica 12:2(1990), 113-118.

[28] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp. 77:261(2008), 227-241.

[29] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Advances in Numerical Mathematics, Wiley, 1996.

[30] Y.-D. Yang, Z.-M. Zhang, and F.-B. Lin, Eigenvalue approximation from below using nonconforming finite elements, Sci. China Math. 53:1(2010), 137-150.
[1] Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623.
[2] Gerard Awanou, Hengguang Li, Eric Malitz. A TWO-GRID METHOD FOR THE C0 INTERIOR PENALTY DISCRETIZATION OF THE MONGE-AMPERE EQUATION [J]. Journal of Computational Mathematics, 2020, 38(4): 547-564.
[3] Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565-579.
[4] Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
[5] Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468.
[6] Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486.
[7] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[8] Dietmar Gallistl, Mira Schedensack. A ROBUST DISCRETIZATION OF THE REISSNER-MINDLIN PLATE WITH ARBITRARY POLYNOMIAL DEGREE [J]. Journal of Computational Mathematics, 2020, 38(1): 1-13.
[9] Nikolaus von Daniels, Michael Hinze. VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(1): 14-40.
[10] Malte Braack, Utku Kaya. LOCAL PRESSURE CORRECTION FOR THE STOKES SYSTEM [J]. Journal of Computational Mathematics, 2020, 38(1): 125-141.
[11] Yunqing Huang, Huayi Wei, Wei Yang, Nianyu Yi. RECOVERY BASED FINITE ELEMENT METHOD FOR BIHARMONIC EQUATION IN 2D [J]. Journal of Computational Mathematics, 2020, 38(1): 84-102.
[12] Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142-175.
[13] Jun Hu, Shangyou Zhang. AN ERROR ANALYSIS METHOD SPP-BEAM AND A CONSTRUCTION GUIDELINE OF NONCONFORMING FINITE ELEMENTS FOR FOURTH ORDER ELLIPTIC PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(1): 195-222.
[14] Yu Du, Haijun Wu, Zhimin Zhang. SUPERCONVERGENCE ANALYSIS OF THE POLYNOMIAL PRESERVING RECOVERY FOR ELLIPTIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 223-238.
[15] Weijie Huang, Zhiping Li. A MIXED FINITE ELEMENT METHOD FOR MULTI-CAVITY COMPUTATION IN INCOMPRESSIBLE NONLINEAR ELASTICITY [J]. Journal of Computational Mathematics, 2019, 37(5): 609-628.
Viewed
Full text


Abstract