Xin Li
Xin Li. SOME PROPERTIES FOR ANALYSISSUITABLE TSPLINES[J]. Journal of Computational Mathematics, 2015, 33(4): 428442.
[1] X. Li, J. Zheng, T. W. Sederberg, T.J.R. Hughes, M.A. Scott, On the linear independence of Tsplines blending functions, Computer Aided Geometric Design, 29 (2012), 6376. [2] L.B. Veiga, A. Buffa, D.C.G. Sangalli, Analysissuitable Tsplines are dualcompatible, Comput. Methods Appl. Mech. Engrg, (2012), 249252. [3] J. Zhang, X. Li, On the linear independence and partition of unity of arbitrary degree analysissuitable Tsplines, Communications in Mathematics and Statistics, submitted. [4] T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, Tsplines and TNURCCSs, ACM Transactions on Graphics, 22:3 (2003), 477484. [5] T.W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, T. Lyche, Tspline simplification and local refinement, ACM Transactions on Graphics, 23 (2004), 276283. [6] H. Ipson, Tspline merging, MSc. Thesis, Brigham Young University (April 2005). [7] T.W. Sederberg, G.T. Finnigan, X. Li, H. Lin, H. Ipson, Watertight trimmed NURBS, ACM Transactions on Graphics, 27, (2008), Article no. 79. [8] M.A. Scott, X. Li, T.W. Sederberg, T.J.R. Hughes, Local refinement of analysissuitable Tsplines, Computer Methods in Applied Mechanics and Engineering, 213216, (2012), 206222. [9] T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194, (2005), 41354195. [10] J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, Chichester, 2009. [11] J.A. Cottrell, A. Reali, Y. Bazilevs, T.J.R. Hughes, Isogeometric analysis of structural vibrations, Computer Methods in Applied Mechanics and Engineering, 195, (2006), 52575296. [12] J.A. Evans, Y. Bazilevs, I. Babuška, T.J.R. Hughes, nwidths, supinfs, and optimality ratios for the kversion of the isogeometric finite element method, Computer Methods in Applied Mechanics and Engineering, 198, (2009), 17261741. [13] S. Lipton, J.A. Evans, Y. Bazilevs, T. Elguedj, T.J.R. Hughes, Robustness of isogeometric structural discretizations under severe mesh distortion, Computer Methods in Applied Mechanics and Engineering, 199, (2010), 357373. [14] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using Tsplines, Computer Methods in Applied Mechanics and Engineering, 199, (2010), 229263. [15] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, C.M. Landis, A phasefield description of dynamic brittle fracture, Computer Methods in Applied Mechanics and Engineering, 217220, (2012), 7795. [16] D.J. Benson, Y. Bazilevs, E. De Luycker, M. C. Hsu, M.A. Scott, T.J.R. Hughes, T. Belytschko, A generalized finite element formulation for arbitrary basis functions: from isogeometric analysis to XFEM, International Journal for Numerical Methods in Engineering, 83 (2010), 765785. [17] A. Buffa, D. Cho, G. Sangalli, Linear independence of the Tspline blending functions associated with some particular Tmeshes, Computer Methods in Applied Mechanics and Engineering, 199 (2010), 14371445. [18] X. Li, M.A. Scott, Analysissuitable Tsplines: Characterization, refinablility and approximation, Mathematical Models and Methods in Applied Sciences, 24 (2014), 1141C1164. [19] L.B. Veiga, A. Buffa, G. Sangalli, R. Vazquez, Analysissuitable Tsplines of arbitrary degree: definition and properties, Mathematical Models and Methods in Applied Sciences, 23 (2013), 19792003. [20] L. Ramshaw, Blossoming: A connectthedots approach to splines, Technical Report 19, Digital Equipment Corporation, Systems Research Center. [21] L. Ramshaw, Blossoms are polar forms, Computer Aided Geometric Design, (1989), 323358. [22] Z. Chen, Y. Feng, The blossom appproach to the dimension of the bivariate spline space, Journal of Computational Mathematics, 18 (2000), 501514. [23] J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, Y. Feng, Polynomial splines over hierarchical Tmeshes, Graphical Models, 74 (2008), 7686. [24] X. Li, J. Deng, F. Chen, Surface modeling with polynomial splines over hierarchical Tmeshes, The Visual Computer, 23 (2007), 10271033. [25] X. Li, J. Deng, F. Chen, Polynomial splines over general Tmeshes, The Visual Computer, 26 (2010), 277286. [26] Z. Huang, J. Deng, Y. Feng, F. Chen, New proof of dimension formula of spline spaces over Tmeshes via smoothing cofactors, Journal of Computational Mathematics, 24 (2006), 501514. [27] D. Forsey, R. Bartels, Hierarchical bspline refinement, Comput. Graph, 22 (1988), 205212. [28] A.V. Vuong, C. Giannelli, B. Jüttler, B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200 (2011), 35543567. [29] T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined boxpartitions, CAGD 30, (2013), 331356. [30] G.T. Finnigan, Arbitrary degree Tsplines, MsC. Thesis, Brigham Young University (August 2008). 
[1]  Han,Lin CHEN, Xue Zhang LIANG,Si Long PENG , Shao Liang XIAO. Realvalued periodic wavelets:construction and relation with Fourier series [J]. Journal of Computational Mathematics, 1999, 17(5): 509522. 
Viewed  
Full text 


Abstract 

