Previous Articles     Next Articles

ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES

Qing-Jie Guo, Ren-Hong Wang, Chong-Jun Li   

  1. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
  • Received:2013-08-07 Revised:2014-11-17 Online:2015-05-15 Published:2015-05-15
  • Supported by:

    This work is partly supported by the National Natural Science Foundation of China (Nos. 11290143, U1135003, 11471066, 11271060, 11301052), Fundamental Research of Civil Aircraft (No. MJ-F-2012-04), and the Fundamental Research Funds for the Central Universities (Nos. DUT13LK07, DUT13LK45, DUT14YQ111).

Qing-Jie Guo, Ren-Hong Wang, Chong-Jun Li. ON THE PROBLEM OF INSTABILITY IN THE DIMENSIONS OF SPLINE SPACES OVER T-MESHES WITH T-CYCLES[J]. Journal of Computational Mathematics, 2015, 33(3): 248-262.

The T-meshes are local modification of rectangular meshes which allow T-junctions. The splines over T-meshes are involved in many fields, such as finite element methods, CAGD etc. The dimension of a spline space is a basic problem for the theories and applications of splines. However, the problem of determining the dimension of a spline space is difficult since it heavily depends on the geometric properties of the partition. In many cases, the dimension is unstable. In this paper, we study the instability in the dimensions of spline spaces over T-meshes by using the smoothing cofactor-conformality method. The modified dimension formulas of spline spaces over T-meshes with T-cycles are also presented. Moreover, some examples are given to illustrate the instability in the dimensions of the spline spaces over some special meshes.

CLC Number: 

[1] R. Abgrall, Numerical discretization of first-order Hamilton-Jacobi equations on triangular meshes, Comm. Pure Appl. Math., 49 (1996), 1339-1373.

[2] R. Abgrall, Numerical discretization of boundary conditions for first order Hamilton-Jacobi equations, SIAM J. Numer. Anal., 41 (2003), 2233-2261.

[3] R. Abgrall, Construction of simple, stable and convergent high order schemes for steady first order Hamilton-Jacobi equations, SIAM J. Sci. Comput., 31 (2009), 2419-2446.

[4] M. Bardi and I. Cappuzzo-Dolcetta, Optimal Control and Viscosity solutions of Hamilton-Jacobi- Bellman Equations, Boston, 1997.

[5] G. Barles, Uniqueness and regularity results for first order Hamilton-Jacobi equations, Indiana Univ. Math. J., 39 (1990), 443-466.

[6] G. Barles and P.E. Souganidis, Convergence of approximation schemes for fully nonlinear second order equations, Asympt. Anal., 4 (1991), 271-283.

[7] T.J. Barth and J.A. Sethian, Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains, J. Comput. Phys., 145 (1998), 1-40.

[8] F. Bornemann and C. Rasch, Finite-element discretization of static Hamilton-Jacobi equations based on a local variational principle, Comput. Visual. Sci., 9 (2006), 57-69.

[9] I. Capuzzo-Dolcatta and F. Leoni, On the Vanishing Viscosity Approximation of a Time dependent Hamilton-Jacobi Equations, in Recent Trends in Nonlinear Analysis, Birkhauser, Basel, 2000, 59- 75.

[10] Y. Cheng and C.W. Shu, A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations, J. Comput. Phys., 223 (2007), 398-415.

[11] B. Cockburn, I. Merev and J. Qian, Local a posteriori error estimate for time-dependent Hamilton- Jacobi equations, Math. Comp., 82 (2013), 187-212.

[12] M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 277 (1983), 1-42.

[13] M.G. Crandall and P.L. Lions, Two approximations of solutions of Hamilton-Jacobi equations, Math. Comp., 43 (1984), 1-19.

[14] J.-L. Guermond and B. Popov, L1-Approximation of stationary Hamilton-Jacobi equations, SIAM J. Numer. Anal., 47 (2008), 339-362.

[15] G. Kossioris, C. Makridakis and P.E. Souganidis, Finite volume schemes for Hamilton-Jacobi equations, Numer. Math., 83 (1999), 427-442.

[16] D. Levy, S. Nayak, C.-W. Shu and Y.-T. Zhang, Central weno schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput., 28 (2006), 2229-2247.

[17] A.M. Oberman, Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton-Jacobi equations and free boundary problems, SIAM J. Numer. Anal., 44 (2006), 879- 895.

[18] S. Osher and C.W. Shu, High-order essentially nonoscillatory schemes for Hamilton-Jacobi equations, SIAM J. Numer. Anal., 28 (1991), 907-922.

[19] J. Qian, Approximations for viscosity solutions of Hamilton-Jacobi equations with locally varying time and space grids, SIAM J. Numer. Anal., 43 (2006), 2371-2401.

[20] J. Qian, Y.-T. Zhang and H.-K. Zhao, Fast sweeping methods for eikonal equations on triangular meshes, SIAM J. Numer. Anal., 45 (2007), 83-107.

[21] P.E. Souganidis, Approximation schemes for viscosity solutions of Hamilton-Jacobi equations, J. Differential Equations, 59 (1985), 1-43.

[22] K. Waagan, Convergent rate of monotone numerical schemes for Hamilton-Jacobi equations with weak boundary conditions, SIAM J. Numer. Anal., 46 (2008), 2371-2392.

[23] X.-G. Li, W. Yan and C.K. Chan, Numerical schemes for Hamilton-Jacobi equations on unstructured meshes, Numer. Math., 94 (2003), 315-331.

[24] J. Yan and S. Osher, A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations , J. Comput. Phys., 230 (2011), 232-244.

[25] Y.-T. Zhang and C.-W. Shu, High-order weno schemes for Hamilton-Jacobi equations on triangular meshes, SIAM J. Sci. Comput., 24 (2003), 1005-1030.
[1] Fang Deng, Chao Zeng, Meng Wu, Jiansong Deng. BASES OF BIQUADRATIC POLYNOMIAL SPLINE SPACES OVER HIERARCHICAL T-MESHES [J]. Journal of Computational Mathematics, 2017, 35(1): 91-120.
[2] Zhang-jin Huang,Jian-song Deng,Yu-yu Feng,Fa-lai Chen. NEW PROOF OF DIMENSION FORMULA OF SPLINE SPACES OVER T-MESHES VIASMOOTHING COFACTORS [J]. Journal of Computational Mathematics, 2006, 24(4): 501-514.
[3] Zhi Bin CHEN,Yu Yu FENG,Kozak Jernej. THE BLOSSOM APPROACH TO THE DIMENSION OF THE BIVARIATE SPLINE SPACE [J]. Journal of Computational Mathematics, 2000, 18(2): 183-198.
Viewed
Full text


Abstract