• Original Articles • Previous Articles     Next Articles

A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS

Yuping Zeng1, Jinru Chen2, Feng Wang2, Yanxia Meng2   

  1. 1. School of Mathematics, Jiaying University, Meizhou 514015, China Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China;
    2. Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China
  • Received:2013-08-27 Revised:2014-03-25 Online:2014-05-15 Published:2014-05-22
  • Supported by:

    We thank the anonymous referees for their valuable comments and suggestions which lead to an improved presentation of this paper. This work was supported by NSFC under the grant 11371199, 11226334 and 11301275, the Jiangsu Provincial 2011 Program (Collaborative Innovation Center of Climate Change), the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 12KJB110013), Natural Science Foundation of Guangdong Province of China (Grant No. S2012040007993) and Educational Commission of Guangdong Province of China (Grant No. 2012LYM0122).

Yuping Zeng, Jinru Chen, Feng Wang, Yanxia Meng. A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(3): 332-347.

In this paper, we study a weakly over-penalized interior penalty method for non-selfadjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis.

CLC Number: 

[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45 (2007), 1777-1798.

[2] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.

[3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.

[4] A.T. Barker and S.C. Brenner, A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach, J. Sci. Comput., 58 (2014), 290-307.

[5] R. Becker, P. Hansbo and M. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), 723-733.

[6] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003), 306-324.

[7] S.C. Brenner, L. Owens and L.Y Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal., 30 (2008), 107-127.

[8] S.C. Brenner, T. Gudi and L.Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput., 40 (2009), 37-50.

[9] S.C. Brenner, T. Gudi and L.Y. Sung, A weakly over-penalized symmetric interior penalty method for the biharmonic problem, Electron. Trans. Numer. Anal., 37 (2010), 214-238.

[10] H. Chen, X. Xu and R.H.W. Hoppe, Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems, Numer. Math., 116(2010), 383-419.

[11] L. Chen and C. Zhang, AFEM@matlab: a Matlab package of adaptive finite element methods, Technical report, University of Maryland at College Park, 2006.

[12] Z. Chen, D.Y. Kwak and Y.J. Yon, Multigrid algorithms for nonconforming and mixed methods for nonsymmetric and indefinite problems. SIAM J. Sci. Comput., 19 (1998), 502-515.

[13] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84.

[14] B. Cockburn, G.E. Karniadakis and C.W. Shu (Eds.), Discontinuous Galerkin Methods–Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering 11. Springer-Verlag, New York, 2000.

[15] A. Ern and J. Proft, A posteriori discontinuous Galerkin error estimates for transient convectiondiffusion equations, Appl. Math. Lett., 18 (2005), 833-841.

[16] E.H. Georgoulis, Discontinuous Galerkin Methods for Linear Problems: An Introduction, In E. H. Georgoulis, A. Iske, and J. Levesley (eds.), Approximation Algorithms for Complex Systems, Springer Proceedings in Mathematics, Vol. 3, Springer-Verlag, Berlin, 2011.

[17] T. Gudi and A.K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type, SIAM J. Numer. Anal., 45 (2007), 163-192.

[18] T. Gudi, Some nonstandard error analysis of discontinuous Galerkin methods for elliptic problems, Calcolo, 47 (2010), 239-261.

[19] P. Houston, D. Sch¨otzau and T.P. Wihler, Energy norm a posteriori error estimation of hpadaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17 (2007), 33-62.

[20] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), 2374-2399.

[21] K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal., 43 (2005), 1803-1827.

[22] B. Rivière and M.F. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput. Math. Appl., 46 (2003), 141-163.

[23] B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39 (2001), 902-931.

[24] A. Romkes, S. Prudhomme and J.T. Oden, A posteriori error estimation for a new stabilized discontinuous Galerkin method, Appl. Math. Lett., 16 (2003), 447-452.

[25] A.H. Schatz and J. Wang, Some new estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp., 65 (1996), 19-27.

[26] R. Schneider, Y. Xu and A. Zhou, An analysis of discontinuous Galerkin methods for elliptic problems, Adv. Comput. Math., 25 (2006), 259-286.

[27] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1994), 483-493.

[28] S. Sun and M.F. Wheeler, L2(H1)-norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems, J. Sci. Comput., 22/23 (2005), 501-530.

[29] S.K. Tomar and S.I. Repin, Efficient computable error bounds for discontinuous Galerkin pproximations of elliptic problems, J. Comput. Appl. Math., 226 (2009), 358-369.

[30] R. Verf¨urth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, Stuttgart, 1996.

[31] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152-161.

[32] B.I. Wohlmuth and R.H.W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68 (1999), 1347-1378.

[33] J. Yang and Y. Chen, A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations, J. Comput. Math., 24 (2006), 425-434.
[1] Gerard Awanou, Hengguang Li, Eric Malitz. A TWO-GRID METHOD FOR THE C0 INTERIOR PENALTY DISCRETIZATION OF THE MONGE-AMPERE EQUATION [J]. Journal of Computational Mathematics, 2020, 38(4): 547-564.
[2] Liang Ge, Ningning Yan, Lianhai Wang, Wenbin Liu, Danping Yang. HETEROGENEOUS MULTISCALE METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY ELLIPTIC EQUATIONS WITH HIGHLY OSCILLATORY COEFFICIENTS [J]. Journal of Computational Mathematics, 2018, 36(5): 644-660.
[3] Liang Ge, Tongjun Sun. A SPARSE GRID STOCHASTIC COLLOCATION AND FINITE VOLUME ELEMENT METHOD FOR CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY RANDOM ELLIPTIC EQUATIONS [J]. Journal of Computational Mathematics, 2018, 36(2): 310-330.
[4] Ruihan Guo, Liangyue Ji, Yan Xu. HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION [J]. Journal of Computational Mathematics, 2016, 34(2): 135-158.
[5] Hongfei Fu, Hongxing Rui. A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 113-127.
[6] Tianliang Hou, Yanping Chen. MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 158-178.
[7] C. Brennecke, A. Linke, C. Merdon, J. Schöberl. OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS [J]. Journal of Computational Mathematics, 2015, 33(2): 191-208.
[8] Yanzhen Chang, Danping Yang. A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BÉNARD PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(1): 68-87.
[9] Hongfei Fu, Hongxing Rui, Hui Guo. A CHARACTERISTIC FINITE ELEMENT METHOD FOR CONSTRAINED CONVECTION-DIFFUSION-REACTION OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(1): 88-106.
[10] Karl Kunisch, Wenbin Liu, Yanzhen Chang, Ningning Yan, Ruo Li. ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(5): 645-675.
[11] Tang Liu, Ningning Yan and Shuhua Zhang. RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT
METHODS FOR OPTIMAL CONTROL PROBLEMS
[J]. Journal of Computational Mathematics, 2010, 28(1): 55-71.
[12] R.H.W. Hoppe, J. Sch\. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS [J]. Journal of Computational Mathematics, 2009, 27(5): 657-676.
[13] Lei Yuan, Danping Yang. A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE [J]. Journal of Computational Mathematics, 2009, 27(4): 525-542.
[14] Michael Hinze, Ningning Yan, Zhaojie Zhou. Variational Discretization for Optimal Control Governed by Convection Dominated Diffusion Equations [J]. Journal of Computational Mathematics, 2009, 27(2-3): 237-253.
[15] Xiaobing Feng Haijun Wu. A Posteriori Error Estimates for Finite Element Approximations of the Cahn-Hilliard Equation and the Hele-Shaw Flow [J]. Journal of Computational Mathematics, 2008, 26(6): 767-796.
Viewed
Full text


Abstract