• Original Articles • Previous Articles     Next Articles

RATIONAL SPECTRAL COLLOCATION METHOD FOR A COUPLED SYSTEM OF SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS

Suqin Chen, Yingwei Wang, Xionghua Wu   

  1. Department of Mathematics, Tongji University, Shanghai 200092, China
  • Received:2010-06-11 Revised:2010-12-28 Online:2011-07-15 Published:2011-07-15
  • Supported by:

    The support from the National Natural Science Foundation of China under Grants No.10671146 and No.50678122 is acknowledged. The authors are grateful to the referee and the editor for helpful comments and suggestions.

Suqin Chen, Yingwei Wang, Xionghua Wu. RATIONAL SPECTRAL COLLOCATION METHOD FOR A COUPLED SYSTEM OF SINGULARLY PERTURBED BOUNDARY VALUE PROBLEMS[J]. Journal of Computational Mathematics, 2011, 29(4): 458-473.

A novel collocation method for a coupled system of singularly perturbed linear equations is presented. This method is based on rational spectral collocation method in barycentric form with sinh transform. By sinh transform, the original Chebyshev points are mapped into the transformed ones clustered near the singular points of the solution. The results from asymptotic analysis about the singularity solution are employed to determine the parameters in this sinh transform. Numerical experiments are carried out to demonstrate the high accuracy and efficiency of our method.

CLC Number: 

[1] G.P. Thomas, Towards an improved turbulence model for wave-current interactions, Second AnnualReport to EU MAST-III Project “The Kinematics and Dynamics of Wave-Current Interactions”,1998.

[2] G.I. Shishkin, Mesh approximation of singularly perturbed boundary-value problems for systemsof elliptic and parabolic equations, Comp. Maths. Math. Phys., 35 (1995), 429-446.

[3] P.V. Kokotovi?, Applications of singular perturbation techniques to control problems, SIAM Rev.,26 (1984), 501-550.

[4] N. Madden and M. Stynes, A uniformly convergent numerical method for a coupled system of twosingularly perturbed linear reaction-diffusion problems, IMA J. Numer.Anal., 23, 2003, 627-644.

[5] T. Linβ and N. Madden, An improved error estimate for a numerical method for a system ofcoupled singluar perturbed reaction-diffusion equations, Comput. Method. Appl. M., 3, 2003, 417-423.

[6] T. Linβ and N. Madden, Accurate solution of a system of coupled singularly perturbed reactiondiffusionequations, Computing, 3, 2004, 121-133.

[7] S. Matthews, E. ORiordan and G.I. Shishkin, A numerical method for a system of singularlyperturbed reaction-diffusion equations, J. Comput. Appl. Math., 145 (2002), 151-166.

[8] M. Stephens and N. Madden, A parameter-uniform Schwarz method for a coupled system ofreaction-diffusion equations, J. Comput. Appl. Math., 230 (2009), 360-370.

[9] T. Linβ and N. Madden, Layer-adapted meshes for a linear system of coupled singularly perturbedreaction-diffusion problems, IMA J. Numer. Anal., 29 (2009), 109-125.

[10] E. O'Riordan and M. Stynes, Numerical analysis of a strongly coupled system of two singularlyperturbed convection-diffusion problems, Adv. Comput. Math., 30 (2009), 101-121.

[11] E. O'Riordan and J. Stynes and M. Stynes, A parameter-uniform finite difference method for acoupled system of convection-diffusion two-point boundary value problems, Numer. Math. Theor.Meth. Appl., 1 (2008), 176-197.

[12] E. O'Riordan and J. Stynes and M. Stynes, An iterative numerical algorithm for a strongly coupledsystem of singularly perturbed convection-diffusion problems, in NAA 2008, LNCS 5434, Springer-Verlag, Berlin Heidelberg, 2009, 104-115.

[13] R. Baltensperger and J.P. Berrut and Y. Dubey, The linear rational pseudospectral method withpreassigned poles, Numer. Algorithms, 33 (2003), 53-63.

[14] R. Baltensperger and J.P. Berrut and B. Noël, Expeonential convergence of a linear rationalinterpolant between transformed Chebyshev points, Math. Comput., 68 (1999), 1109-1120.

[15] J.P. Berrut and L.N. Trefethen, Barycentric Lagrange interpolation, in Trends and Applicationsin Constructive Approximation, SIAM Rev., 46 (2004), 501-517.

[16] J.P. Berrut and R. Baltensperger and H.D. Mittelmann, Recent development in barycentric rationalinterpolation, in Trends and Applications in Constructive Approximation, Internat. Ser.Numer. Math., 15 (2005), 27-51.

[17] T.W. Tee and L.N. Trefethen, A rational spectral collocation method with adaptively transformedChebyshev grid points, SIAM J. Sci. Comput., 28 (2006), 1798-1811.

[18] Y. Wang, S. Chen and X. Wu, A rational spectral collocation method for solving a class ofparameterized singular perturbation problems, J. Comput. Appl. Math., 233 (2010), 2652-2660.

[19] J.J.H. Miller and E. O'Riordan and G.I. Shishkin, Fitted Numerical Methods for Singular PerturbationProblems-Error Estimates in the Maximum Norm for Linear Problems in One and TwoDimensions, World Scientific, Singapore, 1996.

[20] H.G. Roos and M. Stynes and L. Tobiska, Robust Numerical methods for singularly perturbeddifferential equations, Springer-Verlag, Berlin Heifelberg New York, 1996.

[21] W. Liu and T. Tang, Error analysis for a Galerkin-spectral method with coordinate transformationfor solving singularly perturbed problems, Appl. Numer. Math., 38 (2001), 315-345.

[22] T. Tang and M. R. Trummer, Boundary layer resolving pseudospectral methods for singularperturbation problems, Appl. Numer. Math., 17 (1996), 430-438.

[23] C. Schwab and M. Suri, The p and hp versions of the finite element method for problems withboundary layers, Math. Comput., 65 (1996), 1403-1429.
[1] Yao Cheng, Qiang Zhang. LOCAL ANALYSIS OF THE FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHOD FOR THE TIME-DEPENDENT SINGULARLY PERTURBED PROBLEM [J]. Journal of Computational Mathematics, 2017, 35(3): 265-288.
[2] Serge Nicaise, Christos Xenophontos. AN hp-FEM FOR SINGULARLY PERTURBED TRANSMISSION PROBLEMS [J]. Journal of Computational Mathematics, 2017, 35(2): 152-168.
[3] Mahboub Baccouch. OPTIMAL A POSTERIORI ERROR ESTIMATES OF THE LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTIONDIFFUSION PROBLEMS IN ONE SPACE DIMENSION [J]. Journal of Computational Mathematics, 2016, 34(5): 511-531.
[4] Hans-Görg Roos, Ljiljana Teofanov, Zorica Uzelac. GRADED MESHES FOR HIGHER ORDER FEM [J]. Journal of Computational Mathematics, 2015, 33(1): 1-16.
[5] Hongru Chen, Shaochun Chen. UNIFORMLY CONVERGENT NONCONFORMING ELEMENT FOR 3-D FOURTH ORDER ELLIPTIC SINGULAR PERTURBATION PROBLEM [J]. Journal of Computational Mathematics, 2014, 32(6): 687-695.
[6] Shaohong Du, Xiaoping Xie. ON RESIDUAL-BASED A POSTERIORI ERROR ESTIMATORS FOR LOWEST-ORDER RAVIART-THOMAS ELEMENT APPROXIMATION TO CONVECTION-DIFFUSION-REACTION EQUATIONS [J]. Journal of Computational Mathematics, 2014, 32(5): 522-546.
[7] Galina Muratova, Evgenia Andreeva. MULTIGRID METHOD FOR FLUID DYNAMIC PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 233-247.
[8] Igor Boglaev. UNIFORM QUADRATIC CONVERGENCE OF A MONOTONE WEIGHTED AVERAGE METHOD FOR SEMILINEAR SINGULARLY PERTURBED PARABOLIC PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(6): 620-637.
[9] S. Chandra Sekhara Rao, Sunil Kumar. ROBUST HIGH ORDER CONVERGENCE OF AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED SEMILINEAR REACTION-DIFFUSION PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(5): 509-521.
[10] Yaoming Zhang, Wenzhen Qu, Yan Gu. EVALUATION OF SINGULAR AND NEARLY SINGULAR INTEGRALS IN THE BEM WITH EXACT GEOMETRICAL REPRESENTATION [J]. Journal of Computational Mathematics, 2013, 31(4): 355-369.
[11] Houde Han. A PARAMETER-UNIFORM TAILORED FINITE POINT METHOD FOR SINGULARLY PERTURBED LINEAR ODE SYSTEMS [J]. Journal of Computational Mathematics, 2013, 31(4): 422-438.
[12] Haijin Wang, Qiang Zhang. ERROR ESTIMATE ON A FULLY DISCRETE LOCAL DISCONTINUOUS GALERKIN METHOD FOR LINEAR CONVECTION-DIFFUSION PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(3): 283-307.
[13] Yanzhen Chang, Danping Yang. A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BÉNARD PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(1): 68-87.
[14] Tao Yu, Xingye Yue. EXPONENTIALLY FITTED LOCAL DISCONTINUOUS GALERKIN METHOD FOR CONVECTION-DIFFUSION PROBLEMS [J]. Journal of Computational Mathematics, 2012, 30(3): 298-310.
[15] Mingkang Ni, Limeng Wu. STEP-LIKE CONTRAST STRUCTURE OF SINGULARLY PERTURBED OPTIMAL CONTROL PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(1): 2-13.
Viewed
Full text


Abstract